Best Data Management Software for Docker - Page 3

Find and compare the best Data Management software for Docker in 2025

Use the comparison tool below to compare the top Data Management software for Docker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    SQL Server Data Tools (SSDT) Reviews
    SQL Server Data Tools (SSDT) revolutionizes the way database development is approached by offering a comprehensive, declarative framework that integrates seamlessly into Visual Studio throughout every stage of the process. With SSDT's Transact-SQL design features, you can efficiently create, troubleshoot, manage, and enhance databases. You have the flexibility to operate within a database project or directly interact with a database instance, whether it is hosted on-premises or in the cloud. Familiar Visual Studio features facilitate database development, including code navigation, IntelliSense, language support akin to that in C# and Visual Basic, targeted validation, debugging tools, and declarative editing capabilities in the Transact-SQL environment. Additionally, SSDT includes a visual Table Designer, which simplifies the creation and modification of tables in both database projects and connected instances. In collaborative settings, you can also leverage version control to manage all project files effectively, ensuring that team contributions are streamlined and organized. This integration not only enhances productivity but also fosters collaboration among developers working on complex database solutions.
  • 2
    IRI Voracity Reviews

    IRI Voracity

    IRI, The CoSort Company

    IRI Voracity is an end-to-end software platform for fast, affordable, and ergonomic data lifecycle management. Voracity speeds, consolidates, and often combines the key activities of data discovery, integration, migration, governance, and analytics in a single pane of glass, built on Eclipse™. Through its revolutionary convergence of capability and its wide range of job design and runtime options, Voracity bends the multi-tool cost, difficulty, and risk curves away from megavendor ETL packages, disjointed Apache projects, and specialized software. Voracity uniquely delivers the ability to perform data: * profiling and classification * searching and risk-scoring * integration and federation * migration and replication * cleansing and enrichment * validation and unification * masking and encryption * reporting and wrangling * subsetting and testing Voracity runs on-premise, or in the cloud, on physical or virtual machines, and its runtimes can also be containerized or called from real-time applications or batch jobs.
  • 3
    Oracle Big Data SQL Cloud Service Reviews
    Oracle Big Data SQL Cloud Service empowers companies to swiftly analyze information across various platforms such as Apache Hadoop, NoSQL, and Oracle Database, all while utilizing their existing SQL expertise, security frameworks, and applications, achieving remarkable performance levels. This solution streamlines data science initiatives and facilitates the unlocking of data lakes, making the advantages of Big Data accessible to a wider audience of end users. It provides a centralized platform for users to catalog and secure data across Hadoop, NoSQL systems, and Oracle Database. With seamless integration of metadata, users can execute queries that combine data from Oracle Database with that from Hadoop and NoSQL databases. Additionally, the service includes utilities and conversion routines that automate the mapping of metadata stored in HCatalog or the Hive Metastore to Oracle Tables. Enhanced access parameters offer administrators the ability to customize column mapping and govern data access behaviors effectively. Furthermore, the capability to support multiple clusters allows a single Oracle Database to query various Hadoop clusters and NoSQL systems simultaneously, thereby enhancing data accessibility and analytics efficiency. This comprehensive approach ensures that organizations can maximize their data insights without compromising on performance or security.
  • 4
    IBM Cloud Content Delivery Network Reviews
    Users anticipate rapid loading times for web applications, yet the delivery of content can often be sluggish and variable. The IBM® Content Delivery Network leverages the Akamai infrastructure to provide exceptional content caching, significantly enhancing delivery speeds. It allows for the efficient serving of non-cacheable dynamic content and offers seamless scalability through a pay-as-you-go model. In collaboration with Akamai, IBM Cloud® delivers a wide array of features while maintaining cost-effectiveness. This alliance merges Akamai's extensive network of nearly 1,700 servers across 136 countries with IBM's robust cloud presence, which includes over 60 data centers in 19 nations, ensuring that content is positioned as closely as possible to users. Additionally, the platform supports the hosting and delivery of website assets, images, videos, documents, and user-generated content using cloud object storage. By doing so, it guarantees quicker and more secure access for users around the globe. Ultimately, this solution not only meets but aims to surpass customer expectations for content delivery speed.
  • 5
    Supabase Reviews

    Supabase

    Supabase

    $25 per month
    Launch a backend in under two minutes by starting with a Postgres database that includes features like authentication, instant APIs, real-time subscriptions, and storage capabilities. Accelerate your development process and direct your efforts toward enhancing your products. Each project utilizes a complete Postgres database, recognized globally as a reliable relational database. Implement user sign-ups and logins while ensuring data security through Row Level Security measures. Facilitate the storage, organization, and serving of large files, accommodating various media types such as videos and images. Customize your code and set up cron jobs seamlessly without the need to deploy or manage scaling servers. There are numerous example applications and starter projects available to help you get started quickly. The platform automatically introspects your database to generate APIs instantly, allowing you to avoid the tedious task of creating repetitive CRUD endpoints and concentrate on your product's development. Type definitions are automatically created from your database schema, enabling a more streamlined coding experience. You can also use Supabase directly in your browser without a complicated build process, and develop locally before deploying to production at your convenience. Manage your Supabase projects effectively right from your local machine, ensuring a smooth and efficient workflow throughout your development journey.
  • 6
    jethro Reviews
    The rise of data-driven decision-making has resulted in a significant increase in business data and a heightened demand for its analysis. This phenomenon is prompting IT departments to transition from costly Enterprise Data Warehouses (EDW) to more economical Big Data platforms such as Hadoop or AWS, which boast a Total Cost of Ownership (TCO) that is approximately ten times less. Nevertheless, these new systems are not particularly suited for interactive business intelligence (BI) applications, as they struggle to provide the same level of performance and user concurrency that traditional EDWs offer. To address this shortcoming, Jethro was created. It serves customers by enabling interactive BI on Big Data without necessitating any modifications to existing applications or data structures. Jethro operates as a seamless middle tier, requiring no maintenance and functioning independently. Furthermore, it is compatible with various BI tools like Tableau, Qlik, and Microstrategy, while also being agnostic to data sources. By fulfilling the needs of business users, Jethro allows thousands of concurrent users to efficiently execute complex queries across billions of records, enhancing overall productivity and decision-making capabilities. This innovative solution represents a significant advancement in the field of data analytics.
  • 7
    Nextflow Reviews

    Nextflow

    Seqera Labs

    Free
    Data-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer.
  • 8
    MLReef Reviews
    MLReef allows domain specialists and data scientists to collaborate securely through a blend of coding and no-coding methods. This results in a remarkable 75% boost in productivity, as teams can distribute workloads more effectively. Consequently, organizations are able to expedite the completion of numerous machine learning projects. By facilitating collaboration on a unified platform, MLReef eliminates all unnecessary back-and-forth communication. The system operates on your premises, ensuring complete reproducibility and continuity of work, allowing for easy rebuilding whenever needed. It also integrates with established git repositories, enabling the creation of AI modules that are not only explorative but also versioned and interoperable. The AI modules developed by your team can be transformed into user-friendly drag-and-drop components that are customizable and easily managed within your organization. Moreover, handling data often necessitates specialized expertise that a single data scientist might not possess, making MLReef an invaluable asset by empowering field experts to take on data processing tasks, which simplifies complexities and enhances overall workflow efficiency. This collaborative environment ensures that all team members can contribute to the process effectively, further amplifying the benefits of shared knowledge and skill sets.
  • 9
    DataOps.live Reviews
    Create a scalable architecture that treats data products as first-class citizens. Automate and repurpose data products. Enable compliance and robust data governance. Control the costs of your data products and pipelines for Snowflake. This global pharmaceutical giant's data product teams can benefit from next-generation analytics using self-service data and analytics infrastructure that includes Snowflake and other tools that use a data mesh approach. The DataOps.live platform allows them to organize and benefit from next generation analytics. DataOps is a unique way for development teams to work together around data in order to achieve rapid results and improve customer service. Data warehousing has never been paired with agility. DataOps is able to change all of this. Governance of data assets is crucial, but it can be a barrier to agility. Dataops enables agility and increases governance. DataOps does not refer to technology; it is a way of thinking.
  • 10
    JetBrains DataSpell Reviews
    Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding.
  • 11
    Chalk Reviews
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 12
    Zerve AI Reviews
    By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly.
  • 13
    Citus Reviews

    Citus

    Citus Data

    $0.27 per hour
    Citus enhances the beloved Postgres experience by integrating the capability of distributed tables, while remaining fully open source. It now supports both schema-based and row-based sharding, alongside compatibility with Postgres 16. You can scale Postgres effectively by distributing both data and queries, starting with a single Citus node and seamlessly adding more nodes and rebalancing shards as your needs expand. By utilizing parallelism, maintaining a larger dataset in memory, increasing I/O bandwidth, and employing columnar compression, you can significantly accelerate query performance by up to 300 times or even higher. As an extension rather than a fork, Citus works with the latest versions of Postgres, allowing you to utilize your existing SQL tools and build on your Postgres knowledge. Additionally, you can alleviate infrastructure challenges by managing both transactional and analytical tasks within a single database system. Citus is available for free download as open source, giving you the option to self-manage it while actively contributing to its development through GitHub. Shift your focus from database concerns to application development by running your applications on Citus within the Azure Cosmos DB for PostgreSQL environment, making your workflow more efficient.
  • 14
    DataTrust Reviews
    DataTrust is designed to speed up testing phases and lower delivery costs by facilitating continuous integration and continuous deployment (CI/CD) of data. It provides a comprehensive suite for data observability, validation, and reconciliation at an extensive scale, all without the need for coding and with user-friendly features. Users can conduct comparisons, validate data, and perform reconciliations using reusable scenarios. The platform automates testing processes and sends alerts when problems occur. It includes interactive executive reports that deliver insights into quality dimensions, alongside personalized drill-down reports equipped with filters. Additionally, it allows for comparison of row counts at various schema levels across multiple tables and enables checksum data comparisons. The rapid generation of business rules through machine learning adds to its versatility, giving users the option to accept, modify, or discard rules as required. It also facilitates the reconciliation of data from multiple sources, providing a complete array of tools to analyze both source and target datasets effectively. Overall, DataTrust stands out as a powerful solution for enhancing data management practices across different organizations.
  • 15
    Tarantool Reviews
    Businesses require a solution to maintain seamless operations of their systems, enhance data processing speed, and ensure storage reliability. In-memory technologies have emerged as effective tools for addressing these challenges. For over a decade, Tarantool has been assisting organizations globally in creating intelligent caches, data marts, and comprehensive client profiles while optimizing server utilization. This approach not only reduces the expenses associated with storing credentials compared to isolated solutions but also enhances both the service and security of client applications. Furthermore, it lowers the costs of data management by minimizing the number of separate systems that hold customer identities. By analyzing user behavior and data, companies can boost sales through improved speed and accuracy in recommending products or services. Additionally, enhancing the performance of mobile and web channels can significantly reduce user attrition. In the context of large organizations, IT systems often operate within a closed network loop, which poses risks as data circulates without adequate protection. Consequently, it becomes imperative for corporations to adopt robust strategies that not only safeguard their data but also ensure optimal system functionality.
  • 16
    ProxySQL Reviews
    ProxySQL is engineered with a sophisticated multi-core framework that can handle hundreds of thousands of simultaneous connections while efficiently multiplexing them across numerous servers. It offers sharding capabilities based on user, schema, or table through its sophisticated query rule engine or customizable plugins. The development team is relieved from the need to alter queries generated by Object-Relational Mappers (ORMs) or packaged applications, as ProxySQL's dynamic query rewriting feature can adjust SQL statements as needed. The term "battle-tested" barely captures its resilience; ProxySQL has proven itself in the most demanding conditions. With performance as its core focus, the metrics speak for themselves. As an open-source, high-performance, and highly available proxy for MySQL and PostgreSQL, ProxySQL serves as a powerful SQL proxy solution, acting as a crucial intermediary between database clients and servers. This extensive array of features is designed to enhance and simplify database operations, ultimately allowing organizations to maximize their database infrastructure's effectiveness. The capabilities of ProxySQL ensure that organizations can achieve unparalleled efficiency and reliability in their database management tasks.
  • 17
    CloudBeaver Enterprise Reviews
    CloudBeaver Enterprise is a nimble, web-based data management solution tailored for secure operations across multiple database types. It allows for effortless integration with various database systems, including SQL, NoSQL, and cloud services such as AWS, Microsoft Azure, and Google Cloud Platform (GCP), thanks to its innovative cloud explorer feature. The platform offers a rich array of functionalities, including data visualization, execution of SQL scripts enhanced with smart autocompletion, creation of entity-relationship diagrams, and AI-driven assistance for query generation. Deployment is made straightforward with a single Docker command, and the platform also accommodates offline server setups that do not require internet connectivity. Additionally, it boasts advanced user management features, integrating seamlessly with enterprise authentication solutions like AWS SSO, SAML, and OpenID to ensure secure access control and efficient user provisioning. Furthermore, CloudBeaver Enterprise promotes teamwork by allowing users to share resources and connections, thereby enhancing collaboration. This comprehensive approach makes it an ideal choice for organizations looking to streamline their database management and foster a cooperative work environment.
  • 18
    Astro by Astronomer Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 19
    Commvault Cloud Reviews
    Commvault Cloud serves as an all-encompassing cyber resilience solution aimed at safeguarding, managing, and restoring data across various IT settings, which include on-premises systems, cloud infrastructures, and SaaS platforms. Utilizing the power of Metallic AI, it boasts cutting-edge functionalities such as AI-enhanced threat detection, automated compliance mechanisms, and accelerated recovery options like Cleanroom Recovery and Cloudburst Recovery. The platform guarantees ongoing data protection through proactive risk assessments, threat identification, and cyber deception tactics, all while enabling smooth recovery and business continuity through infrastructure-as-code automation. By providing a streamlined management interface, Commvault Cloud allows organizations to protect their vital data assets, ensure regulatory compliance, and quickly address cyber threats, which ultimately helps in reducing downtime and minimizing operational interruptions. Additionally, the platform's robust features make it an essential tool for businesses aiming to enhance their overall data security posture in an ever-evolving digital landscape.
  • 20
    Nightfall Reviews
    Uncover, categorize, and safeguard your sensitive information with Nightfall™, which leverages machine learning technology to detect essential business data, such as customer Personally Identifiable Information (PII), across your SaaS platforms, APIs, and data systems, enabling effective management and protection. With the ability to integrate quickly through APIs, you can monitor your data effortlessly without the need for agents. Nightfall’s machine learning capabilities ensure precise classification of sensitive data and PII, ensuring comprehensive coverage. You can set up automated processes for actions like quarantining, deleting, and alerting, which enhances efficiency and bolsters your business’s security. Nightfall seamlessly connects with all your SaaS applications and data infrastructure. Begin utilizing Nightfall’s APIs for free to achieve sensitive data classification and protection. Through the REST API, you can retrieve organized results from Nightfall’s advanced deep learning detectors, identifying elements such as credit card numbers and API keys, all with minimal coding. This allows for a smooth integration of data classification into your applications and workflows utilizing Nightfall's REST API, setting a foundation for robust data governance. By employing Nightfall, you not only protect your data but also empower your organization with enhanced compliance capabilities.
  • 21
    Gilhari Reviews
    Gilhari is a microservice framework that provides persistence for JSON objects in relational database. This microservice framework is available as a Docker image and can be configured according to an app-specific object or relational model. Gilhari exposes REST (Representational State Transfer) interface for APIs (POST/GET, PUT and DELETE ) to perform CRUD (Create. Retrieve. Update. Delete) operations on app-specific JSON objects. Here are some highlights from Gilhari: * Metadata driven, object model independent and database agnostic framework * Easily customizable/configurable to your JSON object model * JSON attributes can be mapped to table columns, allowing full query capabilities as well as optimizations * Supports complex object modeling, including 1-m, 1-m and m-m relationships * No code is required to handle REST APIs (POST/GET, PUT/DELETE), data exchange (CRUD), or database schema creation.
  • 22
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 23
    Elucidata Polly Reviews
    Leverage the capabilities of biomedical data through the Polly Platform, which is designed to enhance the scalability of batch jobs, workflows, coding environments, and visualization tools. By facilitating resource pooling, Polly optimally allocates resources according to your specific usage needs and leverages spot instances whenever feasible. This functionality contributes to increased optimization, improved efficiency, quicker response times, and reduced costs associated with resource utilization. Additionally, Polly provides a real-time dashboard for monitoring resource consumption and expenses, effectively reducing the burden of resource management on your IT department. An essential aspect of Polly's framework is its commitment to version control, ensuring that your workflows and analyses maintain consistency through a strategic combination of dockers and interactive notebooks. Furthermore, we've implemented a system that enables seamless co-existence of data, code, and the computing environment, enhancing collaboration and reproducibility. With cloud-based data storage and project sharing capabilities, Polly guarantees that every analysis you conduct can be reliably reproduced and verified. Thus, Polly not only optimizes your workflow but also fosters a collaborative environment for continuous improvement and innovation.
  • 24
    Nebula Graph Reviews
    Designed specifically for handling super large-scale graphs with latency measured in milliseconds, this graph database continues to engage with the community for its preparation, promotion, and popularization. Nebula Graph ensures that access is secured through role-based access control, allowing only authenticated users. The database supports various types of storage engines and its query language is adaptable, enabling the integration of new algorithms. By providing low latency for both read and write operations, Nebula Graph maintains high throughput, effectively simplifying even the most intricate data sets. Its shared-nothing distributed architecture allows for linear scalability, making it an efficient choice for expanding businesses. The SQL-like query language is not only user-friendly but also sufficiently robust to address complex business requirements. With features like horizontal scalability and a snapshot capability, Nebula Graph assures high availability, even during failures. Notably, major internet companies such as JD, Meituan, and Xiaohongshu have successfully implemented Nebula Graph in their production environments, showcasing its reliability and performance in real-world applications. This widespread adoption highlights the database's effectiveness in meeting the demands of large-scale data management.
  • 25
    Cayley Reviews
    Cayley is an open-source database tailored for Linked Data, drawing inspiration from the graph database that supports Google's Knowledge Graph, previously known as Freebase. This graph database is crafted for user-friendliness and adept at handling intricate data structures, featuring an integrated query editor, a visualizer, and a Read-Eval-Print Loop (REPL). It supports various query languages, including Gizmo, which is influenced by Gremlin, a GraphQL-like query language, and MQL, a streamlined version catering to Freebase enthusiasts. Cayley's modular architecture allows seamless integration with preferred programming languages and backend storage solutions, making it production-ready, thoroughly tested, and utilized by numerous companies for their operational tasks. Additionally, it is optimized for application use, demonstrating impressive performance metrics; for instance, testing has shown that it can effortlessly manage 134 million quads in LevelDB on consumer-grade hardware from 2014, with multi-hop intersection queries—such as finding films featuring both X and Y—executing in about 150 milliseconds. By default, Cayley is set up to operate in-memory, which is what the backend memstore refers to, thereby enhancing its speed and efficiency for data retrieval and manipulation. Overall, Cayley offers a powerful solution for those looking to leverage linked data in their applications.