Best Data Science Software for Docker

Find and compare the best Data Science software for Docker in 2024

Use the comparison tool below to compare the top Data Science software for Docker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Jupyter Notebook Reviews
    Open-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses.
  • 2
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 3
    Coder Reviews
    Coder offers self-hosted cloud development environments, provisioned as code and ready for developers from day one. Favored by enterprises, Coder is open source and can be deployed air-gapped on-premise or in your cloud, ensuring powerful infrastructure access without sacrificing governance. By shifting local development and source code to a centralized infrastructure, Coder allows developers to access their remote environments via their preferred desktop or web-based IDE. This approach enhances developer experience, productivity, and security. With Coder’s ephemeral development environments, provisioned as code from pre-defined templates, developers can instantly create new workspaces. This streamlines the process, eliminating the need to deal with local dependency versioning issues or lengthy security approvals. Coder enables developers to onboard or switch projects in a matter of minutes.
  • 4
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 5
    Kedro Reviews
    Kedro provides the foundation for clean, data-driven code. It applies concepts from software engineering to machine-learning projects. Kedro projects provide scaffolding for complex machine-learning and data pipelines. Spend less time on "plumbing", and instead focus on solving new problems. Kedro standardizes the way data science code is written and ensures that teams can collaborate easily to solve problems. You can make a seamless transition between development and production by using exploratory code. This code can be converted into reproducible, maintainable and modular experiments. A series of lightweight connectors are used to save and upload data across a variety of file formats and file systems.
  • 6
    JetBrains DataSpell Reviews
    With a single keystroke, switch between editor and command modes. Use the arrow keys to navigate between cells. All the Jupyter shortcuts are available. Fully interactive outputs are available right under the cell. Editing code cells is easy with smart code completion, quick error checking and quick fixes, and easy navigation. You can connect to remote JupyterHub or JupyterLab servers from the IDE. Interactively run Python scripts and arbitrary expressions in a Python Console. You can see the outputs and the state variables in real time. Split Python scripts into code cells using the #%% separator, and run them individually in a Jupyter notebook. Interactive controls allow you to browse DataFrames or visualizations in real time. All popular Python scientific libraries, including Plotly and Altair, ipywidgets and others, are supported.
  • 7
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 8
    Knoldus Reviews
    The largest global team of Fast Data and Functional Programming engineers focused on developing high-performance, customized solutions. Through rapid prototyping and proof-of-concept, we move from "thought to thing". CI/CD can help you create an ecosystem that will deliver at scale. To develop a shared vision, it is important to understand the stakeholder needs and the strategic intent. MVP should be deployed to launch the product in a most efficient and expedient manner. Continuous improvements and enhancements are made to meet new requirements. Without the ability to use the most recent tools and technology, it would be impossible to build great products or provide unmatched engineering services. We help you capitalize on opportunities, respond effectively to competitive threats, scale successful investments, and reduce organizational friction in your company's processes, structures, and culture. Knoldus assists clients in identifying and capturing the highest value and meaningful insights from their data.
  • 9
    Bitfount Reviews
    Bitfount provides a platform for distributed data sciences. We enable deep data collaborations that do not require data sharing. Distributed data science connects algorithms to data and not the other way around. In minutes, you can set up a federated privacy protecting analytics and machine learning network. This will allow your team to focus on innovation and insights instead of bureaucracy. Although your data team is equipped with the skills to solve your most difficult problems and innovating, they are hindered by data access barriers. Are you having trouble accessing your data? Are compliance processes taking too much time? Bitfount offers a better way for data experts to be unleashed. Connect siloed or multi-cloud data sources while protecting privacy and commercial sensitivity. No expensive, time-consuming data lift-and-shift. Useage-based access control to ensure that teams only do the analysis you need, with the data you want. Transfer access control management to the teams that have the data.
  • Previous
  • You're on page 1
  • Next