Best Graph Databases for Docker

Find and compare the best Graph Databases for Docker in 2024

Use the comparison tool below to compare the top Graph Databases for Docker on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache TinkerPop Reviews

    Apache TinkerPop

    Apache Software Foundation

    Free
    Apache TinkerPop™, a graph computing framework, is available for graph databases (OLTP), and graph analytic system (OLAP). Apache TinkerPop's graph traversal language is Gremlin. Gremlin allows users to express complex traversals (or queries) on their application's property diagram in a concise, data-flow language. Each Gremlin traversal consists of a sequence (potentially nested). A graph is a structure that is composed of vertices or edges. Each edge and vertices can have an unlimited number of key/value pairs, called properties. Vertices can be used to denote discrete objects, such as a person or a place or an event. Edges denote relationships between vertices. A person might know another person, be involved in an event, or have been to a specific place recently. If a domain contains a heterogeneous set objects (vertices), that can be linked to one another in many ways (edges), it is called a domain.
  • 2
    ArcadeDB Reviews
    ArcadeDB allows you to manage complex models without any compromises. Polyglot Persistence is gone. There is no need to have multiple databases. ArcadeDB Multi-Model databases can store graphs and documents, key values, time series, and key values. Each model is native to the database engine so you don't need to worry about translations slowing down your computer. ArcadeDB's engine was developed with Alien Technology. It can crunch millions upon millions of records per second. ArcadeDB's traversing speed does not depend on the size of the database. It doesn't matter if your database contains a few records or a billion. ArcadeDB can be used as an embedded database on a single server. It can scale up by using Kubernetes to connect multiple servers. It is flexible enough to run on any platform that has a small footprint. Your data is protected. Our unbreakable fully transactional engine ensures durability for mission-critical production database databases. ArcadeDB uses the Raft Consensus Algorithm in order to maintain consistency across multiple servers.
  • 3
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 4
    ApertureDB Reviews

    ApertureDB

    ApertureDB

    $0.33 per hour
    Vector search can give you a competitive edge. Streamline your AI/ML workflows, reduce costs and stay ahead with up to a 10x faster time-to market. ApertureDB’s unified multimodal management of data will free your AI teams from data silos and allow them to innovate. Setup and scale complex multimodal infrastructure for billions objects across your enterprise in days instead of months. Unifying multimodal data with advanced vector search and innovative knowledge graph, combined with a powerful querying engine, allows you to build AI applications at enterprise scale faster. ApertureDB will increase the productivity of your AI/ML team and accelerate returns on AI investment by using all your data. You can try it for free, or schedule a demonstration to see it in action. Find relevant images using labels, geolocation and regions of interest. Prepare large-scale, multi-modal medical scanning for ML and Clinical studies.
  • 5
    AllegroGraph Reviews
    AllegroGraph is a revolutionary solution that allows infinite data integration. It uses a patented approach that unifies all data and siloed information into an Entity Event Knowledge Graph solution that supports massive big data analytics. AllegroGraph uses unique federated sharding capabilities to drive 360-degree insights, and enable complex reasoning across a distributed Knowledge Graph. AllegroGraph offers users an integrated version Gruff, a browser-based graph visualization tool that allows you to explore and discover connections within enterprise Knowledge Graphs. Franz's Knowledge Graph Solution offers both technology and services to help build industrial strength Entity Event Knowledge Graphs. It is based on the best-of-class products, tools, knowledge, skills, and experience.
  • 6
    Cayley Reviews
    Cayley is an open source database for Linked Data. It was inspired by Google's Knowledge Graph graph database (formerly Freebase). Cayley is an open source graph database that allows you to store complex data and makes it easy to use. Built-in query editor, visualizer, and REPL. Cayley supports multiple query languages, including Gizmo, a query engine inspired by Gremlin and GraphQL-inspired query languages, MQL, a simplified version for Freebase lovers, and MQL. Cayley is modular and easy to connect with your favorite programming languages. It can also be used by back-end stores. Cayley has been well tested and used by many companies for their production workloads. It is also fast and optimized for use in applications. Rough performance testing has shown that on 2014 consumer hardware, 134m quads of LevelDB are not a problem, and a multi-hop intersection query - films starring X or Y - takes 150ms. Cayley is set up to run in memory by default (that's what backendmemstore means).
  • 7
    Nebula Graph Reviews
    The graph database is designed for graphs up to super large scale with very low latency. We continue to work with the community to promote, popularize, and prepare the graph database. Nebula Graph allows only authenticated access through role-based access control. Nebula Graph can support multiple storage engines and the query language is extensible to support new algorithms. Nebula Graph offers low latency read/write while maintaining high throughput to simplify complex data sets. Nebula Graph's distributed, shared-nothing architecture allows for linear scaling. Nebula Graph's SQL query language is similar to SQL and can be used to address complex business requirements. Nebula Graph's horizontal scalability, snapshot feature and high availability guarantee that there will be no downtime. Nebula Graph has been used in production environments by large Internet companies such as JD, Meituan and Xiaohongshu.
  • 8
    AnzoGraph DB Reviews

    AnzoGraph DB

    Cambridge Semantics

    AnzoGraph DB offers a wide range of analytical features that can be used to enhance your analytical framework. This video will show you how AnzoGraph DB, a native graph database for massively parallel processing (MPP), is designed for data harmonization. Horizontally scalable graph database designed for online analytics and harmonization. AnzoGraphDB, a market-leading graph database, can help you tackle linked data problems and data harmonization. AnzoGraph DB offers industrialized online performance for enterprise-scale graph apps. AnzoGraph DB supports Labeled Property Graphs (LPGs) and familiar SPARQL*/OWL semantic graphs. You have access to many data science, machine learning, and analytical capabilities that will help you gain new insights at an unparalleled speed and scale. Your analysis will be more effective if you consider the context and relationships of data. Data loading and queries ultra-fast
  • 9
    TIBCO Graph Database Reviews
    Understanding the relationships between data is key to unlocking the true value of continuously changing business data. A graph database, unlike other databases, puts relationships first. It uses Linear Algebra and graph theory to explore and show how complex data webs, sources, and points relate. TIBCO®, Graph Database allows users to store, transform, and interpret complex dynamic data into meaningful insights. Users can quickly build data and computational models that create dynamic relationships between organizational silos. These knowledge graphs provide value by connecting the vast array of data in your organization and revealing relationships that allow you to optimize assets and processes. OLTP and OLAP features combined in a single enterprise-grade data base. Optimistic ACID-level transaction properties with native storage access.
  • Previous
  • You're on page 1
  • Next