Best Data Management Software for Apache Kafka - Page 6

Find and compare the best Data Management software for Apache Kafka in 2025

Use the comparison tool below to compare the top Data Management software for Apache Kafka on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Pinot Reviews

    Apache Pinot

    Apache Corporation

    Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues.
  • 2
    Apache Hudi Reviews

    Apache Hudi

    Apache Corporation

    Hudi serves as a robust platform for constructing streaming data lakes equipped with incremental data pipelines, all while utilizing a self-managing database layer that is finely tuned for lake engines and conventional batch processing. It effectively keeps a timeline of every action taken on the table at various moments, enabling immediate views of the data while also facilitating the efficient retrieval of records in the order they were received. Each Hudi instant is composed of several essential components, allowing for streamlined operations. The platform excels in performing efficient upserts by consistently linking a specific hoodie key to a corresponding file ID through an indexing system. This relationship between record key and file group or file ID remains constant once the initial version of a record is written to a file, ensuring stability in data management. Consequently, the designated file group encompasses all iterations of a collection of records, allowing for seamless data versioning and retrieval. This design enhances both the reliability and efficiency of data operations within the Hudi ecosystem.
  • 3
    Heroic Reviews
    Heroic is an open-source monitoring solution initially developed at Spotify to tackle challenges related to the large-scale collection and near real-time analysis of metrics. It comprises a limited number of specialized components that each serve distinct purposes. The system offers indefinite data retention, contingent upon adequate hardware investment, alongside federation capabilities that enable multiple Heroic clusters to connect and present a unified interface. A key component, Consumers, is tasked with the consumption of metrics, illustrating the system's design for efficiency. During the development of Heroic, it became evident that managing hundreds of millions of time series without sufficient context poses significant challenges. Additionally, the federation support facilitates the handling of requests across various independent Heroic clusters, allowing them to serve clients via a single global interface. This feature not only streamlines operations but also minimizes geographical traffic, as it allows individual clusters to function independently within their designated zones. Such capabilities ensure that Heroic remains a robust choice for organizations needing effective monitoring solutions.
  • 4
    Circonus IRONdb Reviews
    Circonus IRONdb simplifies the management and storage of limitless telemetry data, effortlessly processing billions of metric streams. It empowers users to recognize both opportunities and challenges in real time, offering unmatched forensic, predictive, and automated analytics capabilities. With the help of machine learning, it automatically establishes a "new normal" as your operations and data evolve. Additionally, Circonus IRONdb seamlessly integrates with Grafana, which natively supports our analytics query language, and is also compatible with other visualization tools like Graphite-web. To ensure data security, Circonus IRONdb maintains multiple copies across a cluster of IRONdb nodes. While system administrators usually oversee clustering, they often dedicate considerable time to its upkeep and functionality. However, with Circonus IRONdb, operators can easily configure their clusters to run autonomously, allowing them to focus on more strategic tasks rather than the tedious management of their time series data storage. This streamlined approach not only enhances efficiency but also maximizes resource utilization.
  • 5
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 6
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 7
    StreamFlux Reviews
    Data plays an essential role in the process of establishing, optimizing, and expanding your enterprise. Nevertheless, fully harnessing the potential of data can prove difficult as many businesses encounter issues like limited data access, mismatched tools, escalating expenses, and delayed outcomes. In simple terms, those who can effectively convert unrefined data into actionable insights will excel in the current business environment. A crucial aspect of achieving this is enabling all team members to analyze, create, and collaborate on comprehensive AI and machine learning projects efficiently and within a unified platform. Streamflux serves as a comprehensive solution for addressing your data analytics and AI needs. Our user-friendly platform empowers you to construct complete data solutions, utilize models to tackle intricate inquiries, and evaluate user interactions. Whether your focus is on forecasting customer attrition, estimating future earnings, or crafting personalized recommendations, you can transform raw data into meaningful business results within days rather than months. By leveraging our platform, organizations can not only enhance efficiency but also foster a culture of data-driven decision-making.
  • 8
    Kyrah Reviews
    Kyrah streamlines the management of enterprise data across your cloud ecosystem by overseeing data exploration, organizing storage assets, enforcing security policies, and managing permissions. It ensures that all modifications are transparent, secure, and compliant with GDPR through an automated and easily adjustable change request system. Furthermore, it includes a comprehensive activity log that tracks all events for full accountability. The platform also features a user-friendly self-service data provisioning system that resembles a shopping cart checkout experience. By providing a unified view of the data estate via a storage map combined with a data usage heatmap, it enhances understanding of data landscapes. Additionally, it accelerates market readiness by integrating personnel, processes, and data provisioning within one cohesive interface. With tools that highlight data sensitivity and usage, it empowers organizations to enforce compliance with data sovereignty laws, effectively mitigating the risk of incurring fines. In this way, Kyrah not only simplifies data management but also fosters a culture of accountability and compliance within organizations.
  • 9
    Redpanda Reviews
    Introducing revolutionary data streaming features that enable unparalleled customer experiences. The Kafka API and its ecosystem are fully compatible with Redpanda, which boasts predictable low latencies and ensures zero data loss. Redpanda is designed to outperform Kafka by up to ten times, offering enterprise-level support and timely hotfixes. It also includes automated backups to S3 or GCS, providing a complete escape from the routine operations associated with Kafka. Additionally, it supports both AWS and GCP environments, making it a versatile choice for various cloud platforms. Built from the ground up for ease of installation, Redpanda allows for rapid deployment of streaming services. Once you witness its incredible capabilities, you can confidently utilize its advanced features in a production setting. We take care of provisioning, monitoring, and upgrades without requiring access to your cloud credentials, ensuring that sensitive data remains within your environment. Your streaming infrastructure will be provisioned, operated, and maintained seamlessly, with customizable instance types available to suit your specific needs. As your requirements evolve, expanding your cluster is straightforward and efficient, allowing for sustainable growth.
  • 10
    Samza Reviews

    Samza

    Apache Software Foundation

    Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs.
  • 11
    Red Hat OpenShift Streams Reviews
    Red Hat® OpenShift® Streams for Apache Kafka is a cloud-managed service designed to enhance the developer experience for creating, deploying, and scaling cloud-native applications, as well as for modernizing legacy systems. This service simplifies the processes of creating, discovering, and connecting to real-time data streams, regardless of their deployment location. Streams play a crucial role in the development of event-driven applications and data analytics solutions. By enabling seamless operations across distributed microservices and handling large data transfer volumes with ease, it allows teams to leverage their strengths, accelerate their time to value, and reduce operational expenses. Additionally, OpenShift Streams for Apache Kafka features a robust Kafka ecosystem and is part of a broader suite of cloud services within the Red Hat OpenShift product family, empowering users to develop a diverse array of data-driven applications. With its powerful capabilities, this service ultimately supports organizations in navigating the complexities of modern software development.
  • 12
    Shapelets Reviews
    Experience the power of advanced computing right at your fingertips. With the capabilities of parallel computing and innovative algorithms, there's no reason to hesitate any longer. Created specifically for data scientists in the business realm, this all-inclusive time-series platform delivers the fastest computing available. Shapelets offers a suite of analytical tools, including causality analysis, discord detection, motif discovery, forecasting, and clustering, among others. You can also run, expand, and incorporate your own algorithms into the Shapelets platform, maximizing the potential of Big Data analysis. Seamlessly integrating with various data collection and storage systems, Shapelets ensures compatibility with MS Office and other visualization tools, making it easy to share insights without requiring extensive technical knowledge. Our user interface collaborates with the server to provide interactive visualizations, allowing you to fully leverage your metadata and display it through a variety of modern graphical representations. Additionally, Shapelets equips professionals in the oil, gas, and energy sectors to conduct real-time analyses of their operational data, enhancing decision-making and operational efficiency. By utilizing Shapelets, you can transform complex data into actionable insights.
  • 13
    Baffle Reviews
    Baffle delivers comprehensive data protection solutions that secure data from any origin to any endpoint, allowing organizations to manage visibility over their information. Companies are continually facing cybersecurity challenges, including ransomware attacks, alongside the potential for losing their data assets in both public and private cloud environments. Recent changes in data management regulations and the necessity for enhanced protection have transformed the methods by which data is stored, accessed, and analyzed. By recognizing that data breaches are inevitable, Baffle aims to make such incidents insignificant, offering a crucial layer of defense that guarantees unprotected data remains inaccessible to malicious actors. Our solutions are designed to secure data right from its inception and maintain that security throughout its processing stages. With Baffle's dynamic data security framework applicable to both on-premises and cloud environments, users benefit from various data protection options. This includes the ability to safeguard information in real-time as it transitions from a source data repository to cloud databases or object storage, thereby enabling the safe handling of sensitive information. In this way, Baffle not only protects data but also enhances the overall trust in data management practices.
  • 14
    Meltano Reviews
    Meltano offers unparalleled flexibility in how you can deploy your data solutions. Take complete ownership of your data infrastructure from start to finish. With an extensive library of over 300 connectors that have been successfully operating in production for several years, you have a wealth of options at your fingertips. You can execute workflows in separate environments, perform comprehensive end-to-end tests, and maintain version control over all your components. The open-source nature of Meltano empowers you to create the ideal data setup tailored to your needs. By defining your entire project as code, you can work collaboratively with your team with confidence. The Meltano CLI streamlines the project creation process, enabling quick setup for data replication. Specifically optimized for managing transformations, Meltano is the ideal platform for running dbt. Your entire data stack is encapsulated within your project, simplifying the production deployment process. Furthermore, you can validate any changes made in the development phase before progressing to continuous integration, and subsequently to staging, prior to final deployment in production. This structured approach ensures a smooth transition through each stage of your data pipeline.
  • 15
    Feast Reviews
    Enable your offline data to support real-time predictions seamlessly without the need for custom pipelines. Maintain data consistency between offline training and online inference to avoid discrepancies in results. Streamline data engineering processes within a unified framework for better efficiency. Teams can leverage Feast as the cornerstone of their internal machine learning platforms. Feast eliminates the necessity for dedicated infrastructure management, instead opting to utilize existing resources while provisioning new ones when necessary. If you prefer not to use a managed solution, you are prepared to handle your own Feast implementation and maintenance. Your engineering team is equipped to support both the deployment and management of Feast effectively. You aim to create pipelines that convert raw data into features within a different system and seek to integrate with that system. With specific needs in mind, you want to expand functionalities based on an open-source foundation. Additionally, this approach not only enhances your data processing capabilities but also allows for greater flexibility and customization tailored to your unique business requirements.
  • 16
    Semarchy xDI Reviews
    Semarchy's flexible, unified data platform will help you make better business decisions across your organization. xDI is the high-performance, flexible, extensible data integration that integrates all your data for all types and uses. Its single technology can federate all forms of data integration and maps business rules into executable code. xDI supports multi-cloud environments, on-premise, hybrid, and cloud environments.
  • 17
    rudol Reviews
    You can unify your data catalog, reduce communication overhead, and enable quality control for any employee of your company without having to deploy or install anything. Rudol is a data platform that helps companies understand all data sources, regardless of where they are from. It reduces communication in reporting processes and urgencies and allows data quality diagnosis and issue prevention for all company members. Each organization can add data sources from rudol's growing list of providers and BI tools that have a standardized structure. This includes MySQL, PostgreSQL. Redshift. Snowflake. Kafka. S3*. BigQuery*. MongoDB*. Tableau*. PowerBI*. Looker* (*in development). No matter where the data comes from, anyone can easily understand where it is stored, read its documentation, and contact data owners via our integrations.
  • 18
  • 19
    Acryl Data Reviews
    Bid farewell to abandoned data catalogs. Acryl Cloud accelerates time-to-value by implementing Shift Left methodologies for data producers and providing an easy-to-navigate interface for data consumers. It enables the continuous monitoring of data quality incidents in real-time, automating anomaly detection to avert disruptions and facilitating swift resolutions when issues arise. With support for both push-based and pull-based metadata ingestion, Acryl Cloud simplifies maintenance, ensuring that information remains reliable, current, and authoritative. Data should be actionable and operational. Move past mere visibility and leverage automated Metadata Tests to consistently reveal data insights and identify new opportunities for enhancement. Additionally, enhance clarity and speed up resolutions with defined asset ownership, automatic detection, streamlined notifications, and temporal lineage for tracing the origins of issues while fostering a culture of proactive data management.
  • 20
    APERIO DataWise Reviews
    Data plays a crucial role in every facet of a processing plant or facility, serving as the backbone for most operational workflows, critical business decisions, and various environmental occurrences. Often, failures can be linked back to this very data, manifesting as operator mistakes, faulty sensors, safety incidents, or inadequate analytics. APERIO steps in to address these challenges effectively. In the realm of Industry 4.0, data integrity stands as a vital component, forming the bedrock for more sophisticated applications, including predictive models, process optimization, and tailored AI solutions. Recognized as the premier provider of dependable and trustworthy data, APERIO DataWise enables organizations to automate the quality assurance of their PI data or digital twins on a continuous and large scale. By guaranteeing validated data throughout the enterprise, businesses can enhance asset reliability significantly. Furthermore, this empowers operators to make informed decisions, fortifies the detection of threats to operational data, and ensures resilience in operations. Additionally, APERIO facilitates precise monitoring and reporting of sustainability metrics, promoting greater accountability and transparency within industrial practices.
  • 21
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 22
    SecuPi Reviews
    SecuPi presents a comprehensive data-centric security solution that includes advanced fine-grained access control (ABAC), Database Activity Monitoring (DAM), and various de-identification techniques such as FPE encryption, physical and dynamic masking, and right to be forgotten (RTBF) deletion. This platform is designed to provide extensive protection across both commercial and custom applications, encompassing direct access tools, big data environments, and cloud infrastructures. With SecuPi, organizations can utilize a single data security framework to effortlessly monitor, control, encrypt, and categorize their data across all cloud and on-premises systems without requiring any modifications to existing code. The platform is agile and configurable, enabling it to adapt to both current and future regulatory and auditing demands. Additionally, its implementation is rapid and cost-effective, as it does not necessitate any alterations to source code. SecuPi's fine-grained data access controls ensure that sensitive information is safeguarded, granting users access solely to the data they are entitled to, while also integrating smoothly with Starburst/Trino to automate the enforcement of data access policies and enhance data protection efforts. This capability allows organizations to maintain compliance and security effortlessly as they navigate their data management challenges.
  • 23
    VeloDB Reviews
    VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
  • 24
    Baidu Palo Reviews
    Palo empowers businesses to swiftly establish a PB-level MPP architecture data warehouse service in just minutes while seamlessly importing vast amounts of data from sources like RDS, BOS, and BMR. This capability enables Palo to execute multi-dimensional big data analytics effectively. Additionally, it integrates smoothly with popular BI tools, allowing data analysts to visualize and interpret data swiftly, thereby facilitating informed decision-making. Featuring a top-tier MPP query engine, Palo utilizes column storage, intelligent indexing, and vector execution to enhance performance. Moreover, it offers in-library analytics, window functions, and a range of advanced analytical features. Users can create materialized views and modify table structures without interrupting services, showcasing its flexibility. Furthermore, Palo ensures efficient data recovery, making it a reliable solution for enterprises looking to optimize their data management processes.
  • 25
    Validio Reviews
    Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.