Best Data Management Software for Apache Kafka - Page 2

Find and compare the best Data Management software for Apache Kafka in 2025

Use the comparison tool below to compare the top Data Management software for Apache Kafka on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Skypoint AI Platform Reviews

    Skypoint AI Platform

    SkyPoint Cloud

    $24,995/month
    The Skypoint AI Platform serves as a robust data and artificial intelligence solution tailored for sectors that are heavily regulated, such as healthcare, finance, and government, facilitating smooth data integration alongside sophisticated AI-driven automation. Constructed on a flexible data lakehouse architecture, this platform merges both structured and unstructured data into a unified source of truth while prioritizing governance, security, and compliance measures. With comprehensive AI capabilities, it encompasses business intelligence, AI agents, and collaborative tools, empowering organizations to optimize their operations and enhance decision-making processes. By utilizing compound AI systems that incorporate specialized language models, retrieval mechanisms, and external resources, Skypoint provides customized, intelligent solutions aimed at addressing specific industry challenges. Furthermore, its innovative approach ensures that organizations can adapt to evolving regulatory requirements while maximizing efficiency and insights.
  • 2
    Senzing Reviews
    Senzing® entity resolution API software provides the most advanced, affordable, and easy-to-use data matching and relationship detection capabilities available. With Senzing software, you can automatically resolve records about people, organizations and their relationships in real time as new data is received. The highly accurate and complete views Senzing software delivers allow you to reduce costs and enable new revenue opportunities. Senzing provides a set of libraries that that can be deployed on premises or in the cloud, in a variety of ways, depending on your architecture and environment requirements. Data remains in your ecosystem and never flows to Senzing, Inc. Minimal data preparation is required when and no tuning, training or entity resolution experts are needed. A free proof of concept can be completed in about six hours on AWS or bare metal. You can try the Senzing API on up to 100K records for free.
  • 3
    Materialize Reviews

    Materialize

    Materialize

    $0.98 per hour
    Materialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks.
  • 4
    JFrog ML Reviews
    JFrog ML (formerly Qwak) is a comprehensive MLOps platform that provides end-to-end management for building, training, and deploying AI models. The platform supports large-scale AI applications, including LLMs, and offers capabilities like automatic model retraining, real-time performance monitoring, and scalable deployment options. It also provides a centralized feature store for managing the entire feature lifecycle, as well as tools for ingesting, processing, and transforming data from multiple sources. JFrog ML is built to enable fast experimentation, collaboration, and deployment across various AI and ML use cases, making it an ideal platform for organizations looking to streamline their AI workflows.
  • 5
    Airbyte Reviews

    Airbyte

    Airbyte

    $2.50 per credit
    Airbyte is a data integration platform that operates on an open-source model, aimed at assisting organizations in unifying data from diverse sources into their data lakes, warehouses, or databases. With an extensive library of over 550 ready-made connectors, it allows users to craft custom connectors with minimal coding through low-code or no-code solutions. The platform is specifically designed to facilitate the movement of large volumes of data, thereby improving artificial intelligence processes by efficiently incorporating unstructured data into vector databases such as Pinecone and Weaviate. Furthermore, Airbyte provides adaptable deployment options, which help maintain security, compliance, and governance across various data models, making it a versatile choice for modern data integration needs. This capability is essential for businesses looking to enhance their data-driven decision-making processes.
  • 6
    Tinybird Reviews

    Tinybird

    Tinybird

    $0.07 per processed GB
    Utilize Pipes to query and manipulate your data seamlessly, a novel method for linking SQL queries that draws inspiration from Python Notebooks. This approach aims to streamline complexity while maintaining optimal performance. By dividing your query into various nodes, you enhance both development and maintenance processes. With just a single click, you can activate your API endpoints that are ready for production use. Transformations happen instantly, ensuring you always have access to the most current data. You can securely share access to your data with just one click, providing quick and reliable results. In addition to offering monitoring capabilities, Tinybird is designed to scale effortlessly, so you need not be concerned about unexpected traffic surges. Visualize transforming any Data Stream or CSV file into a fully secured real-time analytics API endpoint in mere minutes. We advocate for high-frequency decision-making across every sector, including retail, manufacturing, telecommunications, government, advertising, entertainment, healthcare, and financial services, making data-driven insights accessible to all types of organizations. Our commitment is to empower businesses to make informed decisions swiftly, ensuring they stay ahead in an ever-evolving landscape.
  • 7
    Dataplane Reviews
    Dataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling.
  • 8
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams.
  • 9
    Arcion Reviews

    Arcion

    Arcion Labs

    $2,894.76 per month
    Implement production-ready change data capture (CDC) systems for high-volume, real-time data replication effortlessly, without writing any code. Experience an enhanced Change Data Capture process with Arcion, which provides automatic schema conversion, comprehensive data replication, and various deployment options. Benefit from Arcion's zero data loss architecture that ensures reliable end-to-end data consistency alongside integrated checkpointing, all without requiring any custom coding. Overcome scalability and performance challenges with a robust, distributed architecture that enables data replication at speeds ten times faster. Minimize DevOps workload through Arcion Cloud, the only fully-managed CDC solution available, featuring autoscaling, high availability, and an intuitive monitoring console. Streamline and standardize your data pipeline architecture while facilitating seamless, zero-downtime migration of workloads from on-premises systems to the cloud. This innovative approach not only enhances efficiency but also significantly reduces the complexity of managing data replication processes.
  • 10
    Milvus Reviews
    A vector database designed for scalable similarity searches. Open-source, highly scalable and lightning fast. Massive embedding vectors created by deep neural networks or other machine learning (ML), can be stored, indexed, and managed. Milvus vector database makes it easy to create large-scale similarity search services in under a minute. For a variety languages, there are simple and intuitive SDKs. Milvus is highly efficient on hardware and offers advanced indexing algorithms that provide a 10x speed boost in retrieval speed. Milvus vector database is used in a variety a use cases by more than a thousand enterprises. Milvus is extremely resilient and reliable due to its isolation of individual components. Milvus' distributed and high-throughput nature makes it an ideal choice for large-scale vector data. Milvus vector database uses a systemic approach for cloud-nativity that separates compute and storage.
  • 11
    Quix Reviews

    Quix

    Quix

    $50 per month
    Creating real-time applications and services involves numerous components that must work seamlessly together, including Kafka, VPC hosting, infrastructure as code, container orchestration, observability, CI/CD processes, persistent storage, databases, and beyond. The Quix platform simplifies this complexity by managing all these elements for you. You simply connect your data and begin your development process—it's that straightforward. There's no need to set up clusters or manage resource configurations. With Quix connectors, you can easily ingest transaction messages from your financial processing systems, whether they are hosted in a virtual private cloud or an on-premises data center. All data is securely encrypted during transit, and it is compressed using G-Zip and Protobuf to enhance both security and efficiency. Additionally, you can utilize machine learning models or rule-based algorithms to identify fraudulent patterns. The platform allows you to generate fraud warning notifications that can be used as troubleshooting tickets or presented on support dashboards for easy monitoring. Ultimately, Quix streamlines the development process, letting you focus on building rather than managing infrastructure.
  • 12
    ELCA Smart Data Lake Builder Reviews
    Traditional Data Lakes frequently simplify their role to merely serving as inexpensive raw data repositories, overlooking crucial elements such as data transformation, quality assurance, and security protocols. Consequently, data scientists often find themselves dedicating as much as 80% of their time to the processes of data acquisition, comprehension, and cleansing, which delays their ability to leverage their primary skills effectively. Furthermore, the establishment of traditional Data Lakes tends to occur in isolation by various departments, each utilizing different standards and tools, complicating the implementation of cohesive analytical initiatives. In contrast, Smart Data Lakes address these challenges by offering both architectural and methodological frameworks, alongside a robust toolset designed to create a high-quality data infrastructure. Essential to any contemporary analytics platform, Smart Data Lakes facilitate seamless integration with popular Data Science tools and open-source technologies, including those used for artificial intelligence and machine learning applications. Their cost-effective and scalable storage solutions accommodate a wide range of data types, including unstructured data and intricate data models, thereby enhancing overall analytical capabilities. This adaptability not only streamlines operations but also fosters collaboration across different departments, ultimately leading to more informed decision-making.
  • 13
    Aiven for Apache Kafka Reviews
    Experience Apache Kafka offered as a fully managed service that avoids vendor lock-in while providing comprehensive features for constructing your streaming pipeline. You can establish a fully managed Kafka instance in under 10 minutes using our intuitive web console or programmatically through our API, CLI, Terraform provider, or Kubernetes operator. Seamlessly integrate it with your current technology infrastructure using more than 30 available connectors, and rest assured with comprehensive logs and metrics that come standard through our service integrations. This fully managed distributed data streaming platform can be deployed in any cloud environment of your choice. It’s perfectly suited for applications that rely on event-driven architectures, facilitating near-real-time data transfers and pipelines, stream analytics, and any situation where swift data movement between applications is essential. With Aiven’s hosted and expertly managed Apache Kafka, you can effortlessly set up clusters, add new nodes, transition between cloud environments, and update existing versions with just a single click, all while keeping an eye on performance through a user-friendly dashboard. Additionally, this service enables businesses to scale their data solutions efficiently as their needs evolve.
  • 14
    Artie Reviews

    Artie

    Artie

    $231 per month
    Transmit only the modified data to the target location to eliminate latency issues and minimize resource consumption. Change data capture (CDC) serves as an effective strategy for synchronizing information efficiently. Utilizing log-based replication offers a seamless method for real-time data duplication without hindering the performance of the primary database. You can establish the complete solution swiftly, requiring no ongoing pipeline management. This allows your data teams to focus on more valuable initiatives. Implementing Artie is a straightforward process that involves just a few easy steps. Artie takes care of backfilling historical records and will consistently relay new modifications to the designated table as they happen. The system guarantees data consistency and exceptional reliability. Should an outage occur, Artie uses offsets in Kafka to resume operations from the last point, ensuring high data integrity while eliminating the need for complete re-synchronization. This robust approach not only streamlines data management but also enhances overall operational efficiency.
  • 15
    Yandex Data Streams Reviews

    Yandex Data Streams

    Yandex

    $0.086400 per GB
    Facilitates seamless data exchange among components within microservice architectures. When utilized as a communication method for microservices, it not only streamlines integration but also enhances reliability and scalability. The system allows for reading and writing data in nearly real-time, while providing the flexibility to set data throughput and storage durations according to specific requirements. Users can finely configure resources for processing data streams, accommodating anything from small streams of 100 KB/s to more substantial ones at 100 MB/s. Additionally, Yandex Data Transfer enables the delivery of a single stream to various targets with distinct retention policies. Data is automatically replicated across multiple availability zones that are geographically distributed, ensuring redundancy and accessibility. After the initial setup, managing data streams can be done centrally through either the management console or the API, offering convenient oversight. It also supports continuous data collection from diverse sources, including website browsing histories and application logs, making it a versatile tool for real-time analytics. Overall, Yandex Data Streams stands out for its robust capabilities in handling various data ingestion needs across different platforms.
  • 16
    PeerDB Reviews

    PeerDB

    PeerDB

    $250 per month
    When PostgreSQL serves as the foundation of your enterprise and is a key data source, PeerDB offers an efficient, straightforward, and economical solution for replicating data from PostgreSQL to data warehouses, queues, and storage systems. It is engineered to function seamlessly at any scale and is specifically adapted for various data repositories. By utilizing replication messages sourced from the PostgreSQL replication slot, PeerDB adeptly replays schema updates while providing alerts for slot growth and active connections. It also includes native support for PostgreSQL toast columns and large JSONB columns, making it particularly advantageous for IoT applications. The platform features an optimized query architecture aimed at minimizing warehouse expenditures, which is especially beneficial for users of Snowflake and BigQuery. Additionally, it accommodates partitioned tables through both publication mechanisms. PeerDB ensures rapid and reliable initial data loads via transaction snapshotting and CTID scanning techniques. With features such as high availability, in-place upgrades, autoscaling, advanced logging, comprehensive metrics, and monitoring dashboards, as well as burstable instance types, it is also well-suited for development environments. Overall, PeerDB stands out as a versatile tool that effectively meets the diverse needs of modern data management.
  • 17
    StreamNative Reviews

    StreamNative

    StreamNative

    $1,000 per month
    StreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming.
  • 18
    Hydrolix Reviews

    Hydrolix

    Hydrolix

    $2,237 per month
    Hydrolix serves as a streaming data lake that integrates decoupled storage, indexed search, and stream processing, enabling real-time query performance at a terabyte scale while significantly lowering costs. CFOs appreciate the remarkable 4x decrease in data retention expenses, while product teams are thrilled to have four times more data at their disposal. You can easily activate resources when needed and scale down to zero when they are not in use. Additionally, you can optimize resource usage and performance tailored to each workload, allowing for better cost management. Imagine the possibilities for your projects when budget constraints no longer force you to limit your data access. You can ingest, enhance, and transform log data from diverse sources such as Kafka, Kinesis, and HTTP, ensuring you retrieve only the necessary information regardless of the data volume. This approach not only minimizes latency and costs but also eliminates timeouts and ineffective queries. With storage being independent from ingestion and querying processes, each aspect can scale independently to achieve both performance and budget goals. Furthermore, Hydrolix's high-density compression (HDX) often condenses 1TB of data down to an impressive 55GB, maximizing storage efficiency. By leveraging such innovative capabilities, organizations can fully harness their data potential without financial constraints.
  • 19
    Entity Framework Core Reviews
    Entity Framework (EF) Core is a versatile, lightweight, and open-source version of the widely used Entity Framework data access technology that operates across different platforms. It empowers .NET developers to interact with databases through .NET objects, significantly reducing the amount of data-access code that would typically need to be written. In EF Core, data interaction occurs through a model, which consists of entity classes and a context object that acts as a connection to the database. This context object facilitates both querying and data manipulation. Developers can generate a model directly from an existing database or manually create one to correspond with the database schema. After establishing a model, EF migrations can be employed to build a database from it, allowing for the database to evolve in tandem with any changes made to the model. Furthermore, instances of entity classes can be retrieved from the database using Language Integrated Query (LINQ), and operations such as creating, deleting, and modifying records in the database are accomplished through these instances, thus streamlining the data management process. Overall, EF Core simplifies database interactions and enhances the efficiency of data-driven applications.
  • 20
    DoubleCloud Reviews

    DoubleCloud

    DoubleCloud

    $0.024 per 1 GB per month
    Optimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.
  • 21
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 22
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency.
  • 23
    Speedb Reviews
    Introducing Speedb, the cutting-edge key-value storage engine that is fully compatible with RocksDB, offering enhanced stability, efficiency, and performance improvements. By becoming a part of the Hive, Speedb’s open-source community, you can engage with others to refine and exchange insights and best practices regarding RocksDB. Speedb stands as a viable alternative for users of LevelDB and RocksDB who are looking to elevate their applications. If you are utilizing event streaming platforms such as Kafka, Flink, Spark, Splunk, or Elastic, incorporating Speedb can significantly boost their performance. The growing volume of metadata in contemporary data sets is leading to notable performance challenges for various applications, but with Speedb, you can maintain affordable costs while ensuring your applications run seamlessly, even during peak demand. When considering whether to upgrade or implement a new key-value store within your infrastructure, Speedb is well-equipped to meet the demands. By integrating Speedb's sophisticated key-value storage engine into your projects, you will swiftly notice enhancements in performance and efficiency, allowing you to focus on innovation rather than troubleshooting.
  • 24
    WarpStream Reviews

    WarpStream

    WarpStream

    $2,987 per month
    WarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure.
  • 25
    Peaka Reviews

    Peaka

    Peaka

    $1 per month
    Unify all your data sources, encompassing both relational and NoSQL databases, SaaS applications, and APIs, allowing you to query them as if they were a single data entity instantly. Process data at its source without delay, enabling you to query, cache, and merge information from various origins seamlessly. Utilize webhooks to bring in real-time streaming data from platforms like Kafka and Segment into the Peaka BI Table, moving away from the traditional nightly batch ingestion in favor of immediate data accessibility. Approach every data source as though it were a relational database, transforming any API into a table that can be integrated and joined with your other datasets. Employ familiar SQL syntax to execute queries in NoSQL environments, allowing you to access data from both SQL and NoSQL databases using the same skill set. Consolidate your data to query and refine it into new sets, which you can then expose through APIs to support other applications and systems. Streamline your data stack setup without becoming overwhelmed by scripts and logs, and remove the complexities associated with building, managing, and maintaining ETL pipelines. This approach not only enhances efficiency but also empowers teams to focus on deriving insights rather than being bogged down by technical hurdles.