Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Pytest is an invaluable tool for enhancing your programming skills, as it simplifies the creation of both basic tests and complicated functional tests for various applications and libraries. The framework’s ability to provide detailed assertion introspection means you can rely solely on standard assert statements for all your testing needs. It offers thorough information regarding failed assertions, automatically identifies test modules and functions, and features modular fixtures that help manage both small and parameterized long-lived test resources effectively. Additionally, pytest can seamlessly execute unittest (including trial) and nose test suites, and it is compatible with Python versions 3.6 and above, as well as PyPy 3. Its rich plugin architecture boasts over 315 external plugins and is backed by a vibrant community of users. Furthermore, the maintainers of pytest, along with thousands of other packages, have partnered with Tidelift to provide commercial support and maintenance for the open-source dependencies integral to your projects. By leveraging pytest, you can save valuable time, minimize risks, and enhance the overall health of your codebase, all while ensuring that the developers of the specific dependencies you rely on are compensated for their work. This commitment to community and support truly sets pytest apart as a leader in the testing framework landscape.
Description
This plugin generates detailed coverage reports that offer more functionality compared to merely using coverage run. It includes support for subprocess execution, allowing you to fork or run tasks in a subprocess while still obtaining coverage seamlessly. Additionally, it integrates with xdist, enabling the use of all pytest-xdist features without sacrificing coverage reporting. The plugin maintains consistent behavior with pytest, ensuring that all functionalities provided by the coverage package are accessible either via pytest-cov's command line options or through coverage's configuration file. In rare cases, a stray .pth file might remain in the site packages after execution. To guarantee that each test run starts with clean data, the data file is cleared at the start of testing. If you wish to merge coverage results from multiple test runs, you can utilize the --cov-append option to add this data to that of previous runs. Furthermore, the data file is retained at the conclusion of testing, allowing users to leverage standard coverage tools for further analysis of the results. This additional functionality enhances the overall user experience by providing better management of coverage data throughout the testing process.
API Access
Has API
API Access
Has API
Integrations
Codecov
Coverage.py
Python
Allure Report
Captain
HTML
Katalon Recorder
Katalon TestCloud
Launchable
Opik
Integrations
Codecov
Coverage.py
Python
Allure Report
Captain
HTML
Katalon Recorder
Katalon TestCloud
Launchable
Opik
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
pytest
Founded
2004
Website
docs.pytest.org/en/6.2.x/
Vendor Details
Company Name
Python
Country
United States
Website
pypi.org/project/pytest-cov/
Product Features
Functional Testing
Automated Testing
Interface Testing
Regression Testing
Reporting / Analytics
Sanity Testing
Smoke Testing
System Testing
Unit Testing
Software Testing
Automated Testing
Black-Box Testing
Dynamic Testing
Issue Tracking
Manual Testing
Quality Assurance Planning
Reporting / Analytics
Static Testing
Test Case Management
Variable Testing Methods
White-Box Testing