Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Qwen-7B is the 7-billion parameter iteration of Alibaba Cloud's Qwen language model series, also known as Tongyi Qianwen. This large language model utilizes a Transformer architecture and has been pretrained on an extensive dataset comprising web texts, books, code, and more. Furthermore, we introduced Qwen-7B-Chat, an AI assistant that builds upon the pretrained Qwen-7B model and incorporates advanced alignment techniques. The Qwen-7B series boasts several notable features: It has been trained on a premium dataset, with over 2.2 trillion tokens sourced from a self-assembled collection of high-quality texts and codes across various domains, encompassing both general and specialized knowledge. Additionally, our model demonstrates exceptional performance, surpassing competitors of similar size on numerous benchmark datasets that assess capabilities in natural language understanding, mathematics, and coding tasks. This positions Qwen-7B as a leading choice in the realm of AI language models. Overall, its sophisticated training and robust design contribute to its impressive versatility and effectiveness.

Description

RoBERTa enhances the language masking approach established by BERT, where the model is designed to predict segments of text that have been deliberately concealed within unannotated language samples. Developed using PyTorch, RoBERTa makes significant adjustments to BERT's key hyperparameters, such as eliminating the next-sentence prediction task and utilizing larger mini-batches along with elevated learning rates. These modifications enable RoBERTa to excel in the masked language modeling task more effectively than BERT, resulting in superior performance in various downstream applications. Furthermore, we examine the benefits of training RoBERTa on a substantially larger dataset over an extended duration compared to BERT, incorporating both existing unannotated NLP datasets and CC-News, a new collection sourced from publicly available news articles. This comprehensive approach allows for a more robust and nuanced understanding of language.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Marketplace
AiAssistWorks
Alibaba Cloud
GaiaNet
Haystack
Horay.ai
Hugging Face
LM-Kit.NET
ModelScope
Qwen Chat
Sesterce
Spark NLP

Integrations

AWS Marketplace
AiAssistWorks
Alibaba Cloud
GaiaNet
Haystack
Horay.ai
Hugging Face
LM-Kit.NET
ModelScope
Qwen Chat
Sesterce
Spark NLP

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Alibaba

Founded

1999

Country

China

Website

github.com/QwenLM/Qwen-7B

Vendor Details

Company Name

Meta

Founded

2004

Country

United States

Website

ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/

Product Features

Product Features

Alternatives

ChatGLM Reviews

ChatGLM

Zhipu AI

Alternatives

Llama Reviews

Llama

Meta
Athene-V2 Reviews

Athene-V2

Nexusflow
BERT Reviews

BERT

Google
CodeQwen Reviews

CodeQwen

Alibaba
ALBERT Reviews

ALBERT

Google
Mistral 7B Reviews

Mistral 7B

Mistral AI