Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MPCPy is a Python library designed to support the testing and execution of occupant-integrated model predictive control (MPC) within building systems. This tool emphasizes the application of data-driven, simplified physical or statistical models to forecast building performance and enhance control strategies. It comprises four primary modules that provide object classes for data importation, interaction with real or simulated systems, data-driven model estimation and validation, and optimization of control inputs. Although MPCPy serves as a platform for integration, it depends on various free, open-source third-party software for model execution, simulation, parameter estimation techniques, and optimization solvers. This encompasses Python libraries for scripting and data manipulation, along with more specialized software solutions tailored for distinct tasks. Notably, the modeling and optimization tasks related to physical systems are currently grounded in the specifications of the Modelica language, which enhances the flexibility and capability of the package. In essence, MPCPy enables users to leverage advanced modeling techniques through a versatile and collaborative environment.
Description
Statsmodels is a Python library designed for the estimation of various statistical models, enabling users to perform statistical tests and explore data effectively. Each estimator comes with a comprehensive array of result statistics, which are validated against established statistical software to ensure accuracy. This package is distributed under the open-source Modified BSD (3-clause) license, promoting free use and modification. Users can specify models using R-style formulas or utilize pandas DataFrames for convenience. To discover available results, you can check dir(results), and you will find that attributes are detailed in results.__doc__, while methods include their own docstrings for further guidance. Additionally, numpy arrays can be employed as an alternative to formulas. For most users, the simplest way to install statsmodels is through the Anaconda distribution, which caters to data analysis and scientific computing across various platforms. Overall, statsmodels serves as a powerful tool for statisticians and data analysts alike.
API Access
Has API
API Access
Has API
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
MPCPy
Country
United States
Website
github.com/lbl-srg/MPCPy
Vendor Details
Company Name
statsmodels
Website
www.statsmodels.org/stable/index.html