Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
Description
RoBERTa enhances the language masking approach established by BERT, where the model is designed to predict segments of text that have been deliberately concealed within unannotated language samples. Developed using PyTorch, RoBERTa makes significant adjustments to BERT's key hyperparameters, such as eliminating the next-sentence prediction task and utilizing larger mini-batches along with elevated learning rates. These modifications enable RoBERTa to excel in the masked language modeling task more effectively than BERT, resulting in superior performance in various downstream applications. Furthermore, we examine the benefits of training RoBERTa on a substantially larger dataset over an extended duration compared to BERT, incorporating both existing unannotated NLP datasets and CC-News, a new collection sourced from publicly available news articles. This comprehensive approach allows for a more robust and nuanced understanding of language.
API Access
Has API
API Access
Has API
Integrations
AI-FLOW
AICamp
AWS Marketplace
Aili
Amazon Bedrock
Anyscale
ConfidentialMind
Entry Point AI
Evertune
Firecrawl
Integrations
AI-FLOW
AICamp
AWS Marketplace
Aili
Amazon Bedrock
Anyscale
ConfidentialMind
Entry Point AI
Evertune
Firecrawl
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
ai.meta.com/llama/
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/