Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects.
Description
LabelMe aims to offer an online platform for annotating images, facilitating the creation of image databases for research in computer vision. By utilizing the annotation tool, users can actively contribute to the growing database. Images can be systematically organized into collections, with the flexibility to create nested collections akin to folders. When a user downloads their database, the organization of collections will reflect this folder structure. Users can also upload images to their collections and annotate them using the LabelMe tool. Furthermore, unlisted collections allow for viewing by anyone with access to the specific URL, although they won't be featured among public folders. Ultimately, LabelMe's objective is to ensure that both images and annotations are made accessible to the research community without any limitations, fostering collaboration and innovation. This commitment to open access highlights the importance of shared resources in advancing computer vision research.
API Access
Has API
API Access
Has API
Integrations
Amazon S3
Amazon SageMaker
Azure Blob Storage
Docker
Flair
Galileo AI
Google Cloud Storage
Hugging Face
Kubernetes
Lightly
Integrations
Amazon S3
Amazon SageMaker
Azure Blob Storage
Docker
Flair
Galileo AI
Google Cloud Storage
Hugging Face
Kubernetes
Lightly
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Label Studio
Country
United States
Website
labelstud.io
Vendor Details
Company Name
LabelMe
Website
labelme.csail.mit.edu/Release3.0/
Product Features
Data Labeling
Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management