Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
Description
VisionPro Deep Learning stands out as a premier software solution for image analysis driven by deep learning, specifically tailored for factory automation needs. Its robust algorithms, proven in real-world scenarios, are finely tuned for machine vision, featuring an intuitive graphical user interface that facilitates neural network training without sacrificing efficiency. This software addresses intricate challenges that traditional machine vision systems struggle to manage, delivering a level of consistency and speed that manual inspection cannot match. Additionally, when paired with VisionPro’s extensive rule-based vision libraries, automation engineers can readily select the most suitable tools for their specific tasks. VisionPro Deep Learning merges a wide-ranging machine vision toolset with sophisticated deep learning capabilities, all within a unified development and deployment environment. This integration significantly streamlines the process of creating vision applications that must adapt to variable conditions. Ultimately, VisionPro Deep Learning empowers users to enhance their automation processes while maintaining high-quality standards.
API Access
Has API
API Access
Has API
Integrations
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
MXNet
NVIDIA DRIVE
Predator DNC
Predator MDC
Predator PDM
Integrations
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
MXNet
NVIDIA DRIVE
Predator DNC
Predator MDC
Predator PDM
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Founded
1998
Country
United States
Website
cloud.google.com/deep-learning-vm
Vendor Details
Company Name
Cognex
Founded
1981
Country
United States
Website
www.cognex.com/products/deep-learning/visionpro-deep-learning
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization