Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Coverage.py serves as a powerful utility for assessing the code coverage of Python applications. It tracks the execution of your program, recording which segments of the code have been activated, and subsequently reviews the source to pinpoint areas that could have been executed yet remained inactive. This measurement of coverage is primarily utilized to evaluate the efficacy of testing efforts. It provides insights into which portions of your code are being tested and which are left untested. To collect data, you can use the command `coverage run` to execute your test suite. Regardless of how you typically run your tests, you can incorporate coverage by executing your test runner with the coverage tool. If the command for your test runner begins with "python," simply substitute the initial "python" with "coverage run." To restrict coverage evaluation to only the code within the current directory and to identify files that have not been executed at all, include the source parameter in your coverage command. By default, Coverage.py measures line coverage, but it is also capable of assessing branch coverage. Additionally, it provides information on which specific tests executed particular lines of code, enhancing your understanding of test effectiveness. This comprehensive approach to coverage analysis can significantly improve the quality and reliability of your codebase.

Description

This module offers metrics for code coverage specifically tailored for Perl, highlighting the extent to which tests engage with the code. By utilizing Devel::Cover, users can identify sections of their code that remain untested and decide on additional tests necessary to enhance coverage. Essentially, code coverage serves as a proxy indicator of software quality. Devel::Cover has reached a commendable level of stability, incorporating an array of features typical of effective coverage tools. It provides detailed reports on statement, branch, condition, subroutine, and pod coverage. Generally, the data on statement and subroutine coverage is reliable, while branch and condition coverage may not always align with expectations. For pod coverage, it leverages Pod::Coverage, and if Pod::Coverage::CountParents is accessible, it will utilize that for more comprehensive insights. Overall, Devel::Cover stands out as an essential tool for Perl developers seeking to improve their code's robustness through better testing practices.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

C
Codecov
HTML
JSON
Django
GitHub
Go
Mako
Perl
Python
SQLite
Tidelift
Vim
XML
pytest
pytest-cov

Integrations

C
Codecov
HTML
JSON
Django
GitHub
Go
Mako
Perl
Python
SQLite
Tidelift
Vim
XML
pytest
pytest-cov

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Coverage.py

Country

United States

Website

coverage.readthedocs.io/en/7.0.0/

Vendor Details

Company Name

metacpan

Website

metacpan.org/pod/Devel::Cover

Product Features

Product Features

Alternatives

JCov Reviews

JCov

OpenJDK

Alternatives

BullseyeCoverage Reviews

BullseyeCoverage

Bullseye Testing Technology
Devel::Cover Reviews

Devel::Cover

metacpan
blanket.js Reviews

blanket.js

Blanket.js