Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Ansys Sherlock stands out as the sole reliability physics-based tool for electronics design that delivers quick and precise life expectancy assessments for electronic components, boards, and systems during the initial design phases. By automating the design analysis process, Ansys Sherlock enables the rapid generation of life predictions, thus eliminating the "test-fail-fix-repeat" cycle that often hampers development. Designers can effectively model the interactions between silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies, allowing for accurate predictions of potential failure risks stemming from thermal, mechanical, and manufacturing stresses, all prior to creating prototypes. Additionally, Sherlock's extensive libraries, which house over 500,000 components, facilitate the seamless transformation of electronic computer-aided design (ECAD) files into computational fluid dynamics (CFD) and finite element analysis (FEA) models. Each of these models is equipped with precise geometries and material properties, ensuring that stress information is accurately conveyed for reliable predictions. This capability not only enhances design efficiency but also significantly reduces the risk of costly errors in the later stages of product development.

Description

GASP is a versatile flow solver that handles both structured and unstructured multi-block configurations, effectively addressing the Reynolds Averaged Navier-Stokes (RANS) equations along with the heat conduction equations pertinent to solid structures. It utilizes a hierarchical-tree architecture for its organization, enabling seamless pre- and post-processing within a single interface. Capable of solving both steady and unsteady three-dimensional RANS equations and their various subsets, it employs a multi-block grid topology that accommodates unstructured meshes composed of tetrahedra, hexahedra, prisms, and pyramids. Additionally, it integrates with a portable extensible toolkit designed for scientific computation, which enhances its versatility. The system achieves improved computational efficiency by uncoupling turbulence and chemistry processes. GASP is compatible with a wide array of parallel computing systems, including clusters, and ensures that the integrated domain decomposition remains user-friendly and transparent. Its robust design makes it suitable for a wide range of fluid dynamics applications.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

No details available.

Integrations

No details available.

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Ansys

Founded

1970

Country

United States

Website

www.ansys.com/products/structures/ansys-sherlock

Vendor Details

Company Name

AeroSoft

Country

United States

Website

www.aerosoftinc.com/gasp_main.php

Product Features

CFD

Computer-Aided Engineering (CAE)

CAD/CAM Compatibility
Finite Element Analysis
Fluid Dynamics
Import / Export Files
Integrated 3D Modeling
Manufacturing Process Simulation
Mechanical Event Simulation
Multibody Dynamics
Thermal Analysis

Product Features

CFD

Simulation

1D Simulation
3D Modeling
3D Simulation
Agent-Based Modeling
Continuous Modeling
Design Analysis
Direct Manipulation
Discrete Event Modeling
Dynamic Modeling
Graphical Modeling
Industry Specific Database
Monte Carlo Simulation
Motion Modeling
Presentation Tools
Stochastic Modeling
Turbulence Modeling

Alternatives

Alternatives

PowerFLOW Reviews

PowerFLOW

Dassault Systèmes
COMSOL Multiphysics Reviews

COMSOL Multiphysics

Comsol Group
Simcenter STAR-CCM+ Reviews

Simcenter STAR-CCM+

Siemens Digital Industries