Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker Clarify offers machine learning (ML) practitioners specialized tools designed to enhance their understanding of ML training datasets and models. It identifies and quantifies potential biases through various metrics, enabling developers to tackle these biases and clarify model outputs. Bias detection can occur at different stages, including during data preparation, post-model training, and in the deployed model itself. For example, users can assess age-related bias in both their datasets and the resulting models, receiving comprehensive reports that detail various bias types. In addition, SageMaker Clarify provides feature importance scores that elucidate the factors influencing model predictions and can generate explainability reports either in bulk or in real-time via online explainability. These reports are valuable for supporting presentations to customers or internal stakeholders, as well as for pinpointing possible concerns with the model's performance. Furthermore, the ability to continuously monitor and assess model behavior ensures that developers can maintain high standards of fairness and transparency in their machine learning applications.

Description

Amazon SageMaker Feature Store serves as a comprehensive, fully managed repository specifically designed for the storage, sharing, and management of features utilized in machine learning (ML) models. Features represent the data inputs that are essential during both the training phase and inference process of ML models. For instance, in a music recommendation application, relevant features might encompass song ratings, listening times, and audience demographics. The importance of feature quality cannot be overstated, as it plays a vital role in achieving a model with high accuracy, and various teams often rely on these features repeatedly. Moreover, synchronizing features between offline batch training and real-time inference poses significant challenges. SageMaker Feature Store effectively addresses this issue by offering a secure and cohesive environment that supports feature utilization throughout the entire ML lifecycle. This platform enables users to store, share, and manage features for both training and inference, thereby facilitating their reuse across different ML applications. Additionally, it allows for the ingestion of features from a multitude of data sources, including both streaming and batch inputs such as application logs, service logs, clickstream data, and sensor readings, ensuring versatility and efficiency in feature management. Ultimately, SageMaker Feature Store enhances collaboration and improves model performance across various machine learning projects.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark
Databricks Data Intelligence Platform
Snowflake

Integrations

Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark
Databricks Data Intelligence Platform
Snowflake

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/sagemaker/clarify/

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/feature-store/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives