Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Deep Learning Containers consist of Docker images that come preloaded and verified with the latest editions of well-known deep learning frameworks. They enable the rapid deployment of tailored machine learning environments, eliminating the need to create and refine these setups from the beginning. You can establish deep learning environments in just a few minutes by utilizing these ready-to-use and thoroughly tested Docker images. Furthermore, you can develop personalized machine learning workflows for tasks such as training, validation, and deployment through seamless integration with services like Amazon SageMaker, Amazon EKS, and Amazon ECS, enhancing efficiency in your projects. This capability streamlines the process, allowing data scientists and developers to focus more on their models rather than environment configuration.
Description
Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EKS
Amazon Elastic Container Registry (ECR)
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EKS
Amazon Elastic Container Registry (ECR)
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/machine-learning/containers/
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/build/
Product Features
Container Management
Access Control
Application Development
Automatic Scaling
Build Automation
Container Health Management
Container Storage
Deployment Automation
File Isolation
Hybrid Deployments
Network Isolation
Orchestration
Shared File Systems
Version Control
Virtualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization