Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Deep Learning Containers consist of Docker images that come preloaded and verified with the latest editions of well-known deep learning frameworks. They enable the rapid deployment of tailored machine learning environments, eliminating the need to create and refine these setups from the beginning. You can establish deep learning environments in just a few minutes by utilizing these ready-to-use and thoroughly tested Docker images. Furthermore, you can develop personalized machine learning workflows for tasks such as training, validation, and deployment through seamless integration with services like Amazon SageMaker, Amazon EKS, and Amazon ECS, enhancing efficiency in your projects. This capability streamlines the process, allowing data scientists and developers to focus more on their models rather than environment configuration.
Description
The SageMaker Edge Agent enables the collection of data and metadata triggered by your specifications, facilitating the retraining of current models with real-world inputs or the development of new ones. This gathered information can also serve to perform various analyses, including assessments of model drift. There are three deployment options available to cater to different needs. GGv2, which is approximately 100MB in size, serves as a fully integrated AWS IoT deployment solution. For users with limited device capabilities, a more compact built-in deployment option is offered within SageMaker Edge. Additionally, for clients who prefer to utilize their own deployment methods, we accommodate third-party solutions that can easily integrate into our user workflow. Furthermore, Amazon SageMaker Edge Manager includes a dashboard that provides insights into the performance of models deployed on each device within your fleet. This dashboard not only aids in understanding the overall health of the fleet but also assists in pinpointing models that may be underperforming, ensuring that you can take targeted actions to optimize performance. By leveraging these tools, users can enhance their machine learning operations effectively.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EKS
Amazon Elastic Container Registry (ECR)
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EKS
Amazon Elastic Container Registry (ECR)
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/machine-learning/containers/
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/sagemaker/edge/
Product Features
Container Management
Access Control
Application Development
Automatic Scaling
Build Automation
Container Health Management
Container Storage
Deployment Automation
File Isolation
Hybrid Deployments
Network Isolation
Orchestration
Shared File Systems
Version Control
Virtualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization