Best Artificial Intelligence Software for Medical LLM

Find and compare the best Artificial Intelligence software for Medical LLM in 2024

Use the comparison tool below to compare the top Artificial Intelligence software for Medical LLM on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    GPT-4 Reviews

    GPT-4

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
  • 2
    GPT-3.5 Reviews

    GPT-3.5

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-3.5 is the next evolution to GPT 3 large language model, OpenAI. GPT-3.5 models are able to understand and generate natural languages. There are four main models available with different power levels that can be used for different tasks. The main GPT-3.5 models can be used with the text completion endpoint. There are models that can be used with other endpoints. Davinci is the most versatile model family. It can perform all tasks that other models can do, often with less instruction. Davinci is the best choice for applications that require a deep understanding of the content. This includes summarizations for specific audiences and creative content generation. These higher capabilities mean that Davinci is more expensive per API call and takes longer to process than other models.
  • 3
    Defog Reviews

    Defog

    Defog

    $599 per month
    Defog is a AI assistant that you can embed in your app. Your users can ask data questions directly from your app in plain English. Upload a CSV file and ask questions, or ask questions about our predefined datasets. Defog can be fine-tuned for vague questions or domain-specific jargon. It supports over 50 languages. With a few lines code, you can add a conversational AI tool to answer data questions from customers. Build your product and not ad hoc reports. AI superpowers with no privacy compromises. Defog was designed to never access or move your database. Defog creates queries compatible with all major data warehouses and databases. Defog is a great tool for large companies who want to reduce their report times and costs, growing businesses that want a more open access to information and individual users who want to experiment and see what Defog can do.
  • 4
    FLAN-T5 Reviews
    FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks.
  • 5
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 6
    Llama 2 Reviews
    The next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2
  • 7
    NVIDIA DRIVE Reviews
    Software is what transforms a vehicle into a smart machine. Open source software stack NVIDIA DRIVE™, enables developers to quickly build and deploy a variety state-of the-art AV applications. This includes perception, localization, mapping, driver monitoring, planning and control, driver monitoring and natural language processing. DRIVE OS, the foundation of the DRIVE SoftwareStack, is the first secure operating system for accelerated computation. It includes NvMedia to process sensor input, NVIDIACUDA®, libraries for parallel computing implementations that are efficient, NVIDIA TensorRT™ for real time AI inference, as well as other tools and modules for accessing hardware engines. NVIDIA DriveWorks®, a SDK that provides middleware functions over DRIVE OS, is essential for autonomous vehicle development. These include the sensor abstraction layer (SAL), sensor plugins, data recorder and vehicle I/O support.
  • 8
    T5 Reviews
    With T5, we propose re-framing all NLP into a unified format where the input and the output are always text strings. This is in contrast to BERT models which can only output a class label, or a span from the input. Our text-totext framework allows us use the same model and loss function on any NLP task. This includes machine translation, document summary, question answering and classification tasks. We can also apply T5 to regression by training it to predict a string representation of a numeric value instead of the actual number.
  • Previous
  • You're on page 1
  • Next