Best Vector Databases for Freelancers

Find and compare the best Vector Databases for Freelancers in 2025

Use the comparison tool below to compare the top Vector Databases for Freelancers on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Embeddinghub Reviews
    One tool allows you to operationalize your embeddings. A comprehensive database that provides embedding functionality previously unavailable on multiple platforms is now available to you. Embeddinghub makes it easy to accelerate your machine learning. Embeddings are dense numerical representations of real world objects and relationships. They can be expressed as vectors. They are often created by first defining an unsupervised machine learning problem, also known as a "surrogate issue". Embeddings are intended to capture the semantics from the inputs they were derived. They can then be shared and reused for better learning across machine learning models. This is possible with Embeddinghub in an intuitive and streamlined way.
  • 2
    KDB.AI Reviews
    KDB.AI, a powerful knowledge based vector database, is a powerful search engine and knowledge-based vector data base that allows developers to create scalable, reliable, and real-time AI applications. It provides advanced search, recommendation, and personalization. Vector databases are the next generation of data management, designed for applications such as generative AI, IoT or time series. Here's what makes them unique, how they work and the new applications they're designed to serve.
  • 3
    SuperDuperDB Reviews
    Create and manage AI applications without the need to move data to complex vector databases and pipelines. Integrate AI, vector search and real-time inference directly with your database. Python is all you need. All your AI models can be deployed in a single, scalable deployment. The AI models and APIs are automatically updated as new data is processed. You don't need to duplicate your data or create an additional database to use vector searching and build on it. SuperDuperDB allows vector search within your existing database. Integrate and combine models such as those from Sklearn PyTorch HuggingFace, with AI APIs like OpenAI, to build even the most complicated AI applications and workflows. With simple Python commands, deploy all your AI models in one environment to automatically compute outputs in your datastore (inference).
  • 4
    Substrate Reviews

    Substrate

    Substrate

    $30 per month
    Substrate is a platform for agentic AI. Elegant abstractions, high-performance components such as optimized models, vector databases, code interpreter and model router, as well as vector databases, code interpreter and model router. Substrate was designed to run multistep AI workloads. Substrate will run your task as fast as it can by connecting components. We analyze your workload in the form of a directed acyclic network and optimize it, for example merging nodes which can be run as a batch. Substrate's inference engine schedules your workflow graph automatically with optimized parallelism. This reduces the complexity of chaining several inference APIs. Substrate will parallelize your workload without any async programming. Just connect nodes to let Substrate do the work. Our infrastructure ensures that your entire workload runs on the same cluster and often on the same computer. You won't waste fractions of a sec per task on unnecessary data transport and cross-regional HTTP transport.
  • 5
    Superlinked Reviews
    Use user feedback and semantic relevance to reliably retrieve optimal document chunks for your retrieval-augmented generation system. In your search system, combine semantic relevance with document freshness because recent results are more accurate. Create a personalized ecommerce feed in real-time using user vectors based on the SKU embeddings that were viewed by the user. A vector index in your warehouse can be used to discover behavioral clusters among your customers. Use spaces to build your indices, and run queries all within a Python Notebook.
  • 6
    ConfidentialMind Reviews
    We've already done the hard work of bundling, pre-configuring and integrating all the components that you need to build solutions and integrate LLMs into your business processes. ConfidentialMind allows you to jump into action. Deploy an endpoint for powerful open-source LLMs such as Llama-2 and turn it into an LLM API. Imagine ChatGPT on your own cloud. This is the most secure option available. Connects the rest with the APIs from the largest hosted LLM provider like Azure OpenAI or AWS Bedrock. ConfidentialMind deploys a Streamlit-based playground UI with a selection LLM-powered productivity tool for your company, such as writing assistants or document analysts. Includes a vector data base, which is critical for most LLM applications to efficiently navigate through large knowledge bases with thousands documents. You can control who has access to your team's solutions and what data they have.
  • 7
    Cloudflare Vectorize Reviews
    Start building in just minutes. Vectorize provides fast and cost-effective vector storage for your AI Retrieval augmented generation (RAG) & search applications. Vectorize integrates seamlessly with Cloudflare’s AI developer platform & AI gateway to centralize development, monitoring, and control of AI applications at a global level. Vectorize is a globally-distributed vector database that allows you to build AI-powered full-stack applications using Cloudflare Workers AI. Vectorize makes it easier and cheaper to query embeddings - representations of objects or values such as text, images, audio, etc. - that are intended to be consumed by machine intelligence models and semantic search algorithms. Search, similarity and recommendation, classification, anomaly detection, and classification based on your data. Search results are improved and faster. Support for string, number and boolean type.
  • 8
    EDB Postgres AI Reviews
    A modern Postgres dataplatform for operators, developers and data engineers. AI builders can also use it to power mission-critical workloads. Flexible deployment across hybrid cloud and multi-cloud. EDB Postgres is the first intelligent data-platform for transactional, analytic, and new AI workloads, powered by a Postgres engine enhanced. It can be deployed either as a cloud managed service, as self-managed software or as a physical device. It provides built-in observability and AI-driven assistance. It also includes migration tooling and a single pane-of-glass for managing hybrid data estates. EDB Postgres AI elevates data infrastructure into a strategic technology asset, bringing analytical and AI systems close to customers' core transactional and operational data. All managed through Postgres, the world's most popular database. Modernize legacy systems with the most comprehensive Oracle compatibility and a suite migration tools to get customers onboard.
  • 9
    Azure Managed Redis Reviews
    Azure Managed Redis offers the latest Redis innovations and industry-leading availability. It also has a cost-effective Total Cost Of Ownership (TCO) that is designed for hyperscale clouds. Azure Managed Redis provides these capabilities on a trusted platform, empowering businesses with the ability to scale and optimize generative AI applications in a seamless manner. Azure Managed Redis uses the latest Redis innovations for high-performance and scalable AI applications. Its features, such as in-memory storage, vector similarity searches, and real-time computing, allow developers to handle large datasets, accelerate machine-learning, and build faster AI applications. Its interoperability to Azure OpenAI Service allows AI workloads that are ready for mission-critical applications to be faster, more scalable and more reliable.