Best Vector Databases for Google Cloud Platform

Find and compare the best Vector Databases for Google Cloud Platform in 2025

Use the comparison tool below to compare the top Vector Databases for Google Cloud Platform on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Zilliz Cloud Reviews
    Searching and analyzing structured data is easy; however, over 80% of generated data is unstructured, requiring a different approach. Machine learning converts unstructured data into high-dimensional vectors of numerical values, which makes it possible to find patterns or relationships within that data type. Unfortunately, traditional databases were never meant to store vectors or embeddings and can not meet unstructured data's scalability and performance requirements. Zilliz Cloud is a cloud-native vector database that stores, indexes, and searches for billions of embedding vectors to power enterprise-grade similarity search, recommender systems, anomaly detection, and more. Zilliz Cloud, built on the popular open-source vector database Milvus, allows for easy integration with vectorizers from OpenAI, Cohere, HuggingFace, and other popular models. Purpose-built to solve the challenge of managing billions of embeddings, Zilliz Cloud makes it easy to build applications for scale.
  • 2
    Weaviate Reviews
    Weaviate is an open source vector database. It allows you to store vector embeddings and data objects from your favorite ML models, and scale seamlessly into billions upon billions of data objects. You can index billions upon billions of data objects, whether you use the vectorization module or your own vectors. Combining multiple search methods, such as vector search and keyword-based search, can create state-of-the art search experiences. To improve your search results, pipe them through LLM models such as GPT-3 to create next generation search experiences. Weaviate's next generation vector database can be used to power many innovative apps. You can perform a lightning-fast, pure vector similarity search on raw vectors and data objects. Combining keyword-based and vector search techniques will yield state-of the-art results. You can combine any generative model with your data to do Q&A, for example, over your dataset.
  • 3
    MongoDB Atlas Reviews

    MongoDB Atlas

    MongoDB

    $0.08/hour
    The most innovative cloud database service available, with unmatched data mobility across AWS, Azure and Google Cloud, as well as built-in automation for resource optimization and workload optimization. MongoDB Atlas is a global cloud database service that supports modern applications. Fully managed MongoDB can be deployed across AWS, Google Cloud and Azure. This is possible with best-in class automation and proven practices that ensure availability, scalability and compliance with the highest data security and privacy standards. This is the best way to deploy, scale, and run MongoDB in cloud. MongoDB Atlas provides security controls for all data. Allow enterprise-grade features to be integrated with your existing security protocols or compliance standards. MongoDB Atlas protects your data with preconfigured security features that allow for authentication, authorization and encryption.
  • 4
    Astra DB Reviews
    Astra DB from DataStax is a real-time vector database as a service for developers that need to get accurate Generative AI applications into production, fast. Astra DB gives you a set of elegant APIs supporting multiple languages and standards, powerful data pipelines and complete ecosystem integrations. Astra DB enables you to quickly build Gen AI applications on your real-time data for more accurate AI that you can deploy in production. Built on Apache Cassandra, Astra DB is the only vector database that can make vector updates immediately available to applications and scale to the largest real-time data and streaming workloads, securely on any cloud. Astra DB offers unprecedented serverless, pay as you go pricing and the flexibility of multi-cloud and open-source. You can store up to 80GB and/or perform 20 million operations per month. Securely connect to VPC peering and private links. Manage your encryption keys with your own key management. SAML SSO secure account accessibility. You can deploy on Amazon, Google Cloud, or Microsoft Azure while still compatible with open-source Apache Cassandra.
  • 5
    Pinecone Reviews
    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Fully managed and developer-friendly, the database is easily scalable without any infrastructure problems. Once you have vector embeddings created, you can search and manage them in Pinecone to power semantic searches, recommenders, or other applications that rely upon relevant information retrieval. Even with billions of items, ultra-low query latency Provide a great user experience. You can add, edit, and delete data via live index updates. Your data is available immediately. For more relevant and quicker results, combine vector search with metadata filters. Our API makes it easy to launch, use, scale, and scale your vector searching service without worrying about infrastructure. It will run smoothly and securely.
  • 6
    Deep Lake Reviews

    Deep Lake

    activeloop

    $995 per month
    We've been working on Generative AI for 5 years. Deep Lake combines the power and flexibility of vector databases and data lakes to create enterprise-grade LLM-based solutions and refine them over time. Vector search does NOT resolve retrieval. You need a serverless search for multi-modal data including embeddings and metadata to solve this problem. You can filter, search, and more using the cloud, or your laptop. Visualize your data and embeddings to better understand them. Track and compare versions to improve your data and your model. OpenAI APIs are not the foundation of competitive businesses. Your data can be used to fine-tune LLMs. As models are being trained, data can be efficiently streamed from remote storage to GPUs. Deep Lake datasets can be visualized in your browser or Jupyter Notebook. Instantly retrieve different versions and materialize new datasets on the fly via queries. Stream them to PyTorch, TensorFlow, or Jupyter Notebook.
  • 7
    ApertureDB Reviews

    ApertureDB

    ApertureDB

    $0.33 per hour
    Vector search can give you a competitive edge. Streamline your AI/ML workflows, reduce costs and stay ahead with up to a 10x faster time-to market. ApertureDB’s unified multimodal management of data will free your AI teams from data silos and allow them to innovate. Setup and scale complex multimodal infrastructure for billions objects across your enterprise in days instead of months. Unifying multimodal data with advanced vector search and innovative knowledge graph, combined with a powerful querying engine, allows you to build AI applications at enterprise scale faster. ApertureDB will increase the productivity of your AI/ML team and accelerate returns on AI investment by using all your data. You can try it for free, or schedule a demonstration to see it in action. Find relevant images using labels, geolocation and regions of interest. Prepare large-scale, multi-modal medical scanning for ML and Clinical studies.
  • 8
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 9
    ConfidentialMind Reviews
    We've already done the hard work of bundling, pre-configuring and integrating all the components that you need to build solutions and integrate LLMs into your business processes. ConfidentialMind allows you to jump into action. Deploy an endpoint for powerful open-source LLMs such as Llama-2 and turn it into an LLM API. Imagine ChatGPT on your own cloud. This is the most secure option available. Connects the rest with the APIs from the largest hosted LLM provider like Azure OpenAI or AWS Bedrock. ConfidentialMind deploys a Streamlit-based playground UI with a selection LLM-powered productivity tool for your company, such as writing assistants or document analysts. Includes a vector data base, which is critical for most LLM applications to efficiently navigate through large knowledge bases with thousands documents. You can control who has access to your team's solutions and what data they have.
  • Previous
  • You're on page 1
  • Next