Best Streaming Analytics Platforms for Solace PubSub+

Find and compare the best Streaming Analytics platforms for Solace PubSub+ in 2024

Use the comparison tool below to compare the top Streaming Analytics platforms for Solace PubSub+ on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Pub/Sub Reviews
    Google Cloud Pub/Sub: Delivery of messages in large quantities with push and pull modes. Auto-scaling, auto-provisioning, support from zero to hundreds GB/second Independent quota and billing are available for subscribers and publishers. Multi-region systems can be simplified by global message routing High availability made easy: Ensure reliable delivery at all scales with synchronous, cross-zone message replication. Auto-everything, no-planning Auto-scaling, auto-provisioning without partitions eliminates the need for planning and ensures that workloads are ready for production from day one. Advanced features built in: Filtering, dead letter delivery, and exponential backoff all help to simplify your applications
  • 2
    Azure Event Hubs Reviews

    Azure Event Hubs

    Microsoft

    $0.03 per hour
    Event Hubs is a fully managed, real time data ingestion service that is simple, reliable, and scalable. Stream millions of events per minute from any source to create dynamic data pipelines that can be used to respond to business problems. Use the geo-disaster recovery or geo-replication features to continue processing data in emergencies. Integrate seamlessly with Azure services to unlock valuable insights. You can allow existing Apache Kafka clients to talk to Event Hubs with no code changes. This allows you to have a managed Kafka experience, without the need to manage your own clusters. You can experience real-time data input and microbatching in the same stream. Instead of worrying about infrastructure management, focus on gaining insights from your data. Real-time big data pipelines are built to address business challenges immediately.
  • 3
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 4
    Amazon Kinesis Reviews
    You can quickly collect, process, analyze, and analyze video and data streams. Amazon Kinesis makes it easy for you to quickly and easily collect, process, analyze, and interpret streaming data. Amazon Kinesis provides key capabilities to process streaming data at any scale cost-effectively, as well as the flexibility to select the tools that best fit your application's requirements. Amazon Kinesis allows you to ingest real-time data, including video, audio, website clickstreams, application logs, and IoT data for machine learning, analytics, or other purposes. Amazon Kinesis allows you to instantly process and analyze data, rather than waiting for all the data to be collected before processing can begin. Amazon Kinesis allows you to ingest buffer and process streaming data instantly, so you can get insights in seconds or minutes, instead of waiting for hours or days.
  • Previous
  • You're on page 1
  • Next