Best Real-Time Analytic Databases for SQL

Find and compare the best Real-Time Analytic Databases for SQL in 2025

Use the comparison tool below to compare the top Real-Time Analytic Databases for SQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 2
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency.
  • 3
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 4
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • Previous
  • You're on page 1
  • Next