Best Real-Time Analytic Databases for SQL

Find and compare the best Real-Time Analytic Databases for SQL in 2024

Use the comparison tool below to compare the top Real-Time Analytic Databases for SQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarRocks Reviews
    StarRocks offers at least 300% more performance than other popular solutions, whether you're using a single or multiple tables. With a rich set connectors, you can ingest real-time data into StarRocks for the latest insights. A query engine that adapts your use cases. StarRocks allows you to scale your analytics easily without moving your data or rewriting SQL. StarRocks allows a rapid journey between data and insight. StarRocks is unmatched in performance and offers a unified OLAP system that covers the most common data analytics scenarios. StarRocks offers at least 300% faster performance than other popular solutions, whether you are working with one table or many. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.
  • 2
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an easy-to-use, powerful and cost-effective platform for stream processing. All in one binary, easily deployable anywhere. We help data teams in organizations of any size and industry process streaming data and historical data quickly, intuitively and efficiently. Lightweight, one binary, no dependencies. Streaming analytics and historical functionality from end-to-end. 1/10 of the cost of comparable open source frameworks Transform real-time data from the market and transactions into real-time insight. Monitor financial data using append-only streams or key-value streams. Implement real-time feature pipelines using Timeplus. All infrastructure logs, metrics and traces are consolidated on one platform. In Timeplus we support a variety of data sources through our web console UI. You can also push data using REST API or create external streams, without copying data to Timeplus.
  • 3
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 4
    Arroyo Reviews
    Scale from 0 to millions of events every second. Arroyo is shipped as a single compact binary. Run locally on MacOS, Linux or Kubernetes for development and deploy to production using Docker or Kubernetes. Arroyo is an entirely new stream processing engine that was built from the ground-up to make real time easier than batch. Arroyo has been designed so that anyone with SQL knowledge can build reliable, efficient and correct streaming pipelines. Data scientists and engineers are able to build real-time dashboards, models, and applications from end-to-end without the need for a separate streaming expert team. SQL allows you to transform, filter, aggregate and join data streams with results that are sub-second. Your streaming pipelines should not page someone because Kubernetes rescheduled your pods. Arroyo can run in a modern, elastic cloud environment, from simple container runtimes such as Fargate, to large, distributed deployments using the Kubernetes logo.
  • Previous
  • You're on page 1
  • Next