Best Query Engines for Python

Find and compare the best Query Engines for Python in 2024

Use the comparison tool below to compare the top Query Engines for Python on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is a table store that allows you to create an open table. It was created by the Apache Iceberg creators. Connect multiple computing frameworks and engines. Reduce query time and costs up to 50%. Centralize enforcement of RBAC policies. Connect any query engine, framework, or tool, including Athena BigQuery, Snowflake Databricks Trino Spark Python, Snowflake Redshift, Snowflake Databricks and Redshift. Smart compaction, data clustering and other automated services reduce storage costs by up to 50% and query times. Unify data access in the database or table. RBAC controls are easy to manage, enforce consistently, and audit. Centralize your security at the table. Tabular is easy-to-use and has RBAC, high-powered performance, and high ingestion under the hood. Tabular allows you to choose from multiple "best-of-breed" compute engines, based on their strengths. Assign privileges to the data warehouse database or table level.
  • 2
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 3
    Timeplus Reviews

    Timeplus

    Timeplus

    $199 per month
    Timeplus is an easy-to-use, powerful and cost-effective platform for stream processing. All in one binary, easily deployable anywhere. We help data teams in organizations of any size and industry process streaming data and historical data quickly, intuitively and efficiently. Lightweight, one binary, no dependencies. Streaming analytics and historical functionality from end-to-end. 1/10 of the cost of comparable open source frameworks Transform real-time data from the market and transactions into real-time insight. Monitor financial data using append-only streams or key-value streams. Implement real-time feature pipelines using Timeplus. All infrastructure logs, metrics and traces are consolidated on one platform. In Timeplus we support a variety of data sources through our web console UI. You can also push data using REST API or create external streams, without copying data to Timeplus.
  • 4
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 5
    Polars Reviews
    Polars, which is aware of the data-wrangling habits of its users, exposes a complete Python interface, including all of the features necessary to manipulate DataFrames. This includes an expression language, which will allow you to write readable, performant code. Polars was written in Rust to provide the Rust ecosystem with a feature-complete DataFrame interface. Use it as either a DataFrame Library or as a query backend for your Data Models.
  • 6
    Arroyo Reviews
    Scale from 0 to millions of events every second. Arroyo is shipped as a single compact binary. Run locally on MacOS, Linux or Kubernetes for development and deploy to production using Docker or Kubernetes. Arroyo is an entirely new stream processing engine that was built from the ground-up to make real time easier than batch. Arroyo has been designed so that anyone with SQL knowledge can build reliable, efficient and correct streaming pipelines. Data scientists and engineers are able to build real-time dashboards, models, and applications from end-to-end without the need for a separate streaming expert team. SQL allows you to transform, filter, aggregate and join data streams with results that are sub-second. Your streaming pipelines should not page someone because Kubernetes rescheduled your pods. Arroyo can run in a modern, elastic cloud environment, from simple container runtimes such as Fargate, to large, distributed deployments using the Kubernetes logo.
  • Previous
  • You're on page 1
  • Next