Best Query Engines for PostgreSQL

Find and compare the best Query Engines for PostgreSQL in 2024

Use the comparison tool below to compare the top Query Engines for PostgreSQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is a table store that allows you to create an open table. It was created by the Apache Iceberg creators. Connect multiple computing frameworks and engines. Reduce query time and costs up to 50%. Centralize enforcement of RBAC policies. Connect any query engine, framework, or tool, including Athena BigQuery, Snowflake Databricks Trino Spark Python, Snowflake Redshift, Snowflake Databricks and Redshift. Smart compaction, data clustering and other automated services reduce storage costs by up to 50% and query times. Unify data access in the database or table. RBAC controls are easy to manage, enforce consistently, and audit. Centralize your security at the table. Tabular is easy-to-use and has RBAC, high-powered performance, and high ingestion under the hood. Tabular allows you to choose from multiple "best-of-breed" compute engines, based on their strengths. Assign privileges to the data warehouse database or table level.
  • 2
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 3
    StarRocks Reviews
    StarRocks offers at least 300% more performance than other popular solutions, whether you're using a single or multiple tables. With a rich set connectors, you can ingest real-time data into StarRocks for the latest insights. A query engine that adapts your use cases. StarRocks allows you to scale your analytics easily without moving your data or rewriting SQL. StarRocks allows a rapid journey between data and insight. StarRocks is unmatched in performance and offers a unified OLAP system that covers the most common data analytics scenarios. StarRocks offers at least 300% faster performance than other popular solutions, whether you are working with one table or many. StarRocks' built-in memory-and-disk-based caching framework is specifically designed to minimize the I/O overhead of fetching data from external storage to accelerate query performance.
  • 4
    Starburst Enterprise Reviews
    Starburst allows you to make better decisions by having quick access to all of your data. Your company has more data than ever, but your data teams are still waiting to analyze it. Starburst gives your data teams quick and accurate access to more data. Starburst Enterprise, a fully supported, production-tested, enterprise-grade distribution for open source Trino (formerly Presto®, SQL), is now available. It increases performance and security, while making it easy for you to deploy, connect, manage, and manage your Trino environment. Starburst allows your team to connect to any source of data, whether it's on-premise, in a cloud, or across a hybrid cloud environment. This allows them to use the analytics tools they already love and access data that lives anywhere.
  • 5
    Arroyo Reviews
    Scale from 0 to millions of events every second. Arroyo is shipped as a single compact binary. Run locally on MacOS, Linux or Kubernetes for development and deploy to production using Docker or Kubernetes. Arroyo is an entirely new stream processing engine that was built from the ground-up to make real time easier than batch. Arroyo has been designed so that anyone with SQL knowledge can build reliable, efficient and correct streaming pipelines. Data scientists and engineers are able to build real-time dashboards, models, and applications from end-to-end without the need for a separate streaming expert team. SQL allows you to transform, filter, aggregate and join data streams with results that are sub-second. Your streaming pipelines should not page someone because Kubernetes rescheduled your pods. Arroyo can run in a modern, elastic cloud environment, from simple container runtimes such as Fargate, to large, distributed deployments using the Kubernetes logo.
  • Previous
  • You're on page 1
  • Next