Best Query Engines for lakeFS

Find and compare the best Query Engines for lakeFS in 2025

Use the comparison tool below to compare the top Query Engines for lakeFS on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive™, a data warehouse software, facilitates the reading, writing and management of large datasets that are stored in distributed storage using SQL. Structure can be projected onto existing data. Hive provides a command line tool and a JDBC driver to allow users to connect to it. Apache Hive is an Apache Software Foundation open-source project. It was previously a subproject to Apache® Hadoop®, but it has now become a top-level project. We encourage you to read about the project and share your knowledge. To execute traditional SQL queries, you must use the MapReduce Java API. Hive provides the SQL abstraction needed to integrate SQL-like query (HiveQL), into the underlying Java. This is in addition to the Java API that implements queries.
  • 2
    Amazon Athena Reviews
    Amazon Athena allows you to easily analyze data in Amazon S3 with standard SQL. Athena is serverless so there is no infrastructure to maintain and you only pay for the queries you run. Athena is simple to use. Simply point to your data in Amazon S3 and define the schema. Then, you can query standard SQL. Most results are delivered in a matter of seconds. Athena makes it easy to prepare your data for analysis without the need for complicated ETL jobs. Anyone with SQL skills can quickly analyze large-scale data sets. Athena integrates with AWS Glue Data Catalog out-of-the box. This allows you to create a unified metadata repositorie across multiple services, crawl data sources and discover schemas. You can also populate your Catalog by adding new and modified partition and table definitions. Schema versioning is possible.
  • 3
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 4
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • Previous
  • You're on page 1
  • Next