Best Teachable Machine Alternatives in 2025
Find the top alternatives to Teachable Machine currently available. Compare ratings, reviews, pricing, and features of Teachable Machine alternatives in 2025. Slashdot lists the best Teachable Machine alternatives on the market that offer competing products that are similar to Teachable Machine. Sort through Teachable Machine alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
743 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
RunPod
RunPod
180 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
3
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
4
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
5
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
6
Alibaba Cloud Machine Learning Platform for AI
Alibaba Cloud
$1.872 per hourAn all-inclusive platform that offers a wide array of machine learning algorithms tailored to fulfill your data mining and analytical needs. The Machine Learning Platform for AI delivers comprehensive machine learning solutions, encompassing data preprocessing, feature selection, model development, predictions, and performance assessment. This platform integrates these various services to enhance the accessibility of artificial intelligence like never before. With a user-friendly web interface, the Machine Learning Platform for AI allows users to design experiments effortlessly by simply dragging and dropping components onto a canvas. The process of building machine learning models is streamlined into a straightforward, step-by-step format, significantly boosting efficiency and lowering costs during experiment creation. Featuring over one hundred algorithm components, the Machine Learning Platform for AI addresses diverse scenarios, including regression, classification, clustering, text analysis, finance, and time series forecasting, catering to a wide range of analytical tasks. This comprehensive approach ensures that users can tackle any data challenge with confidence and ease. -
7
Gradio
Gradio
Create and Share Engaging Machine Learning Applications. Gradio offers the quickest way to showcase your machine learning model through a user-friendly web interface, enabling anyone to access it from anywhere! You can easily install Gradio using pip. Setting up a Gradio interface involves just a few lines of code in your project. There are various interface types available to connect your function effectively. Gradio can be utilized in Python notebooks or displayed as a standalone webpage. Once you create an interface, it can automatically generate a public link that allows your colleagues to interact with the model remotely from their devices. Moreover, after developing your interface, you can host it permanently on Hugging Face. Hugging Face Spaces will take care of hosting the interface on their servers and provide you with a shareable link, ensuring your work is accessible to a wider audience. With Gradio, sharing your machine learning solutions becomes an effortless task! -
8
Predibase
Predibase
Declarative machine learning systems offer an ideal combination of flexibility and ease of use, facilitating the rapid implementation of cutting-edge models. Users concentrate on defining the “what” while the system autonomously determines the “how.” Though you can start with intelligent defaults, you have the freedom to adjust parameters extensively, even diving into code if necessary. Our team has been at the forefront of developing declarative machine learning systems in the industry, exemplified by Ludwig at Uber and Overton at Apple. Enjoy a selection of prebuilt data connectors designed for seamless compatibility with your databases, data warehouses, lakehouses, and object storage solutions. This approach allows you to train advanced deep learning models without the hassle of infrastructure management. Automated Machine Learning achieves a perfect equilibrium between flexibility and control, all while maintaining a declarative structure. By adopting this declarative method, you can finally train and deploy models at the speed you desire, enhancing productivity and innovation in your projects. The ease of use encourages experimentation, making it easier to refine models based on your specific needs. -
9
Daria
XBrain
Daria's innovative automated capabilities enable users to swiftly and effectively develop predictive models, drastically reducing the lengthy iterative processes typically associated with conventional machine learning methods. It eliminates both financial and technological obstacles, allowing enterprises to create AI systems from the ground up. By automating machine learning workflows, Daria helps data professionals save weeks of effort typically spent on repetitive tasks. The platform also offers a user-friendly graphical interface, making it accessible for those new to data science to gain practical experience in machine learning. With a suite of data transformation tools at their disposal, users can effortlessly create various feature sets. Daria conducts an extensive exploration of millions of potential algorithm combinations, modeling strategies, and hyperparameter configurations to identify the most effective predictive model. Moreover, models generated using Daria can be seamlessly deployed into production with just a single line of code through its RESTful API. This streamlined process not only enhances productivity but also empowers businesses to leverage AI more effectively in their operations. -
10
ScoopML
ScoopML
Effortlessly create sophisticated predictive models without the need for mathematics or programming, all in just a few simple clicks. Our comprehensive solution takes you through the entire process, from data cleansing to model construction and prediction generation, ensuring you have everything you need. You can feel secure in your decisions, as we provide insights into the rationale behind AI-driven choices, empowering your business with actionable data insights. Experience the ease of data analytics within minutes, eliminating the necessity for coding. Our streamlined approach allows you to build machine learning algorithms, interpret results, and forecast outcomes with just a single click. Transition from raw data to valuable analytics seamlessly, without writing any code. Just upload your dataset, pose questions in everyday language, and receive the most effective model tailored to your data, which you can then easily share with others. Enhance customer productivity significantly, as we assist companies in harnessing no-code machine learning to elevate their customer experience and satisfaction levels. By simplifying the process, we enable organizations to focus on what truly matters—building strong relationships with their clients. -
11
Tencent Cloud TI Platform
Tencent
The Tencent Cloud TI Platform serves as a comprehensive machine learning service tailored for AI engineers, facilitating the AI development journey from data preprocessing all the way to model building, training, and evaluation, as well as deployment. This platform is preloaded with a variety of algorithm components and supports a range of algorithm frameworks, ensuring it meets the needs of diverse AI applications. By providing a seamless machine learning experience that encompasses the entire workflow, the Tencent Cloud TI Platform enables users to streamline the process from initial data handling to the final assessment of models. Additionally, it empowers even those new to AI to automatically construct their models, significantly simplifying the training procedure. The platform's auto-tuning feature further boosts the efficiency of parameter optimization, enabling improved model performance. Moreover, Tencent Cloud TI Platform offers flexible CPU and GPU resources that can adapt to varying computational demands, alongside accommodating different billing options, making it a versatile choice for users with diverse needs. This adaptability ensures that users can optimize costs while efficiently managing their machine learning workflows. -
12
Deeploy
Deeploy
Deeploy empowers users to maintain oversight of their machine learning models. With our responsible AI platform, you can effortlessly deploy your models while ensuring that transparency, control, and compliance are upheld. In today's landscape, the significance of transparency, explainability, and security in AI models cannot be overstated. By providing a secure environment for model deployment, you can consistently track your model's performance with assurance and responsibility. Throughout our journey, we have recognized the critical role that human involvement plays in the realm of machine learning. When machine learning systems are designed to be explainable and accountable, it enables both experts and consumers to offer valuable feedback, challenge decisions when warranted, and foster a sense of trust. This understanding is precisely why we developed Deeploy, to bridge the gap between advanced technology and human oversight. Ultimately, our mission is to facilitate a harmonious relationship between AI systems and their users, ensuring that ethical considerations are always at the forefront. -
13
Hive AutoML
Hive
Develop and implement deep learning models tailored to specific requirements. Our streamlined machine learning process empowers clients to design robust AI solutions using our top-tier models, customized to address their unique challenges effectively. Digital platforms can efficiently generate models that align with their specific guidelines and demands. Construct large language models for niche applications, including customer service and technical support chatbots. Additionally, develop image classification models to enhance the comprehension of image collections, facilitating improved search, organization, and various other applications, ultimately leading to more efficient processes and enhanced user experiences. -
14
Xero.AI
Xero.AI
$30 per monthIntroducing an AI-driven machine learning engineer designed to cater to all your data science and machine learning requirements. Xero's innovative artificial analyst is set to revolutionize the realm of data science and machine learning. By simply posing your queries to Xara, you can effortlessly manage your data needs. Dive into your datasets and craft personalized visuals through natural language, enhancing your comprehension and insight generation. With an intuitive interface, you can efficiently clean and transform your data while extracting valuable new features. Additionally, by merely inquiring, you can create, train, and evaluate limitless customizable machine learning models, making the process both accessible and efficient. This technology promises to significantly streamline your workflow in data analysis and machine learning. -
15
Wekinator
Wekinator
The Wekinator is an open-source software that is available for free. Initially developed by Rebecca Fiebrink in 2009, Wekinator 1.0 laid the groundwork for subsequent versions. In 2015, she introduced Wekinator 2.0, which featured a complete overhaul with enhanced interactions, new algorithms, and seamless connectivity to various creative coding tools and sensors. This updated version is regularly maintained to address bugs and incorporate user feedback. With Wekinator, individuals can harness machine learning to create innovative musical instruments, gestural game controllers, and systems for computer vision or audio recognition. It empowers users to establish interactive systems by showcasing human actions and their corresponding computer responses, eliminating the need for traditional programming. Users can create unique mappings between gestures and sounds, manipulate a drum machine via their webcam, utilize Kinect technology to play Ableton, and even control interactive visual environments built in platforms like Processing or Unity with simple gestures detected by a webcam or sensors. This opens up a world of creative possibilities for artists and developers alike. -
16
PredictSense
Winjit
PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort. -
17
Core ML
Apple
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback. -
18
Ray
Anyscale
FreeYou can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution. -
19
Hugging Face
Hugging Face
$9 per monthHugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development. -
20
PI.EXCHANGE
PI.EXCHANGE
$39 per monthEffortlessly link your data to the engine by either uploading a file or establishing a connection to a database. Once connected, you can begin to explore your data through various visualizations, or you can prepare it for machine learning modeling using data wrangling techniques and reusable recipes. Maximize the potential of your data by constructing machine learning models with regression, classification, or clustering algorithms—all without requiring any coding skills. Discover valuable insights into your dataset through tools that highlight feature importance, explain predictions, and allow for scenario analysis. Additionally, you can make forecasts and easily integrate them into your current systems using our pre-configured connectors, enabling you to take immediate action based on your findings. This streamlined process empowers you to unlock the full value of your data and drive informed decision-making. -
21
ML Kit
Google
ML Kit offers mobile developers access to Google's extensive machine learning capabilities in a streamlined and user-friendly format. By integrating ML Kit into your iOS and Android applications, you can enhance user engagement, personalization, and overall utility with solutions specifically designed to operate seamlessly on devices. The on-device processing ensures rapid performance and enables real-time applications, such as analyzing camera input. Furthermore, ML Kit functions offline, allowing for the secure processing of images and text that must stay on the device. This technology is built on the same machine learning models that support Google's mobile services, combining cutting-edge algorithms with sophisticated processing techniques through easily accessible APIs to facilitate impactful functionalities in your applications. Additionally, it can identify handwritten text and recognize hand-drawn shapes, including over 300 languages, emojis, and fundamental shapes. This versatility makes ML Kit an invaluable tool for developers looking to innovate and elevate their mobile offerings. -
22
Sixgill Sense
Sixgill
The entire process of machine learning and computer vision is streamlined and expedited through a single no-code platform. Sense empowers users to create and implement AI IoT solutions across various environments, whether in the cloud, at the edge, or on-premises. Discover how Sense delivers ease, consistency, and transparency for AI/ML teams, providing robust capabilities for machine learning engineers while remaining accessible for subject matter experts. With Sense Data Annotation, you can enhance your machine learning models by efficiently labeling video and image data, ensuring the creation of high-quality training datasets. The platform also features one-touch labeling integration, promoting ongoing machine learning at the edge and simplifying the management of all your AI applications, thereby maximizing efficiency and effectiveness. This comprehensive approach makes Sense an invaluable tool for a wide range of users, regardless of their technical background. -
23
Google Cloud TPU
Google
$0.97 per chip-hourAdvancements in machine learning have led to significant breakthroughs in both business applications and research, impacting areas such as network security and medical diagnostics. To empower a broader audience to achieve similar innovations, we developed the Tensor Processing Unit (TPU). This custom-built machine learning ASIC is the backbone of Google services like Translate, Photos, Search, Assistant, and Gmail. By leveraging the TPU alongside machine learning, companies can enhance their success, particularly when scaling operations. The Cloud TPU is engineered to execute state-of-the-art machine learning models and AI services seamlessly within Google Cloud. With a custom high-speed network delivering over 100 petaflops of performance in a single pod, the computational capabilities available can revolutionize your business or lead to groundbreaking research discoveries. Training machine learning models resembles the process of compiling code: it requires frequent updates, and efficiency is key. As applications are developed, deployed, and improved, ML models must undergo continuous training to keep pace with evolving demands and functionalities. Ultimately, leveraging these advanced tools can position your organization at the forefront of innovation. -
24
Delineate
Delineate
$99 per monthDelineate provides a user-friendly interface for creating predictive models powered by machine learning across various applications. Enhance your CRM with insights like churn predictions and sales forecasts, and develop data products tailored for your customers and team, among other possibilities. With Delineate, you can easily tap into data-driven insights that enhance your decision-making processes. This platform is designed for a wide array of users, including founders, revenue teams, product managers, executives, and those passionate about data. Explore Delineate today and discover how to maximize the potential of your data effectively. Embrace the future of analytics and empower your organization with tailored predictive capabilities. -
25
Obviously AI
Obviously AI
$75 per monthExperience the entire journey of developing machine learning algorithms and forecasting results with just a single click. Not every dataset is inherently suitable for machine learning; leverage the Data Dialog to effortlessly refine your data without the hassle of file manipulation. You can easily distribute your prediction reports among your team or make them publicly accessible, allowing anyone to engage with your model and generate predictions. Integrate dynamic ML predictions directly into your application through our user-friendly low-code API. Assess factors like willingness to pay, evaluate leads, and more, all in real-time. Obviously AI equips you with the latest groundbreaking algorithms while ensuring top-notch performance is maintained. You can now accurately forecast revenue, streamline supply chains, and tailor marketing efforts to individual needs. With just a CSV upload or a quick integration with your preferred data sources, you can select your prediction column from a convenient dropdown menu and watch as we automatically construct the AI for you. Additionally, enjoy beautifully crafted visualizations of predicted outcomes, identify key influencers, and explore "what-if" scenarios to better understand potential futures. This innovative approach transforms the way you interact with data and make predictions. -
26
Produvia
Produvia
$1,000 per monthProduvia offers a serverless machine learning development service that streamlines the creation and deployment of machine learning models through advanced cloud infrastructure. By collaborating with Produvia, businesses can leverage this cutting-edge technology to innovate and implement their machine learning strategies effectively. Renowned Fortune 500 companies and Global 500 enterprises turn to Produvia for assistance in building and launching machine learning models utilizing contemporary cloud solutions. At Produvia, we harness the latest advancements in machine learning and deep learning to address various business challenges. Many organizations find themselves spending excessively on infrastructure, prompting a shift toward serverless architectures that help mitigate server-related expenses. The complexity of outdated servers and legacy systems often hampers progress, which has led modern companies to adopt machine learning technologies aimed at transforming their technology frameworks. While many businesses typically hire software developers to create traditional code, innovative organizations are now employing machine learning to produce software capable of generating code autonomously. As the landscape of technology evolves, the shift to automated software development is becoming increasingly prevalent. -
27
Vertex AI Notebooks
Google
$10 per GBVertex AI Notebooks offers a comprehensive, end-to-end solution for machine learning development within Google Cloud. It combines the power of Colab Enterprise and Vertex AI Workbench to give data scientists and developers the tools to accelerate model training and deployment. This fully managed platform provides seamless integration with BigQuery, Dataproc, and other Google Cloud services, enabling efficient data exploration, visualization, and advanced ML model development. With built-in features like automated infrastructure management, users can focus on model building without worrying about backend maintenance. Vertex AI Notebooks also supports collaborative workflows, making it ideal for teams to work on complex AI projects together. -
28
Altair Knowledge Studio
Altair
Altair is utilized by data scientists and business analysts to extract actionable insights from their datasets. Knowledge Studio offers a leading, user-friendly machine learning and predictive analytics platform that swiftly visualizes data while providing clear, explainable outcomes without necessitating any coding. As a prominent figure in analytics, Knowledge Studio enhances transparency and automates machine learning processes through features like AutoML and explainable AI, all while allowing users the flexibility to configure and fine-tune their models, thus maintaining control over the building process. The platform fosters collaboration throughout the organization, enabling data professionals to tackle intricate projects in a matter of minutes or hours rather than dragging them out for weeks or months. The results produced are straightforward and easily articulated, allowing stakeholders to grasp the findings effortlessly. Furthermore, the combination of user-friendliness and the automation of various modeling steps empowers data scientists to create an increased number of machine learning models more swiftly than with traditional coding methods or other available tools. This efficiency not only shortens project timelines but also enhances overall productivity across teams. -
29
SANCARE
SANCARE
SANCARE is an innovative start-up focused on applying Machine Learning techniques to hospital data. We partner with leading experts in the field to enhance our offerings. Our platform delivers an ergonomic and user-friendly interface to Medical Information Departments, facilitating quick adoption and usability. Users benefit from comprehensive access to all documents forming the electronic patient record, ensuring a seamless experience. As an effective production tool, our solution meticulously tracks each phase of the coding procedure for external validation. By leveraging machine learning, we can create robust predictive models that analyze vast data sets while considering contextual factors—capabilities that traditional rule-based systems and semantic analysis tools fall short of providing. This enables the automation of intricate decision-making processes and the identification of subtle signals that may go unnoticed by human analysts. The machine learning engine behind SANCARE is grounded in a probabilistic framework, allowing it to learn from a significant volume of examples to accurately predict the necessary codes without any explicit guidance. Ultimately, our technology not only streamlines coding tasks but also enhances the overall efficiency of healthcare data management. -
30
ioModel
Twin Tech Labs
The ioModel platform aims to empower analytics teams by granting them access to advanced machine learning models without requiring coding skills, thus greatly minimizing both development and upkeep expenses. Additionally, analysts can assess and comprehend the effectiveness of the models created on the platform through well-established statistical validation methods. In essence, the ioModel Research Platform is set to revolutionize machine learning in a manner akin to how spreadsheets transformed general computing. Built entirely on open-source technology, the ioModel Research Platform is accessible under the GPL License on GitHub, albeit without any support or warranty. We encourage our community to engage with us in shaping the roadmap, development, and governance of the Platform. Our commitment lies in fostering an open and transparent approach to advancing analytics, modeling, and innovation, while also ensuring that user feedback plays a pivotal role in the platform's evolution. -
31
FieldDay
FieldDay
$19.99 per monthDiscover the exciting realm of AI and Machine Learning through your smartphone with FieldDay. We've simplified the intricate process of building machine learning models, transforming it into an interactive and enjoyable experience that's as effortless as taking a photograph. With FieldDay, you can design personalized AI applications and seamlessly integrate them into your preferred tools, all from your mobile device. Simply provide FieldDay with examples to learn from, and it will help you create a tailored model that can be incorporated into your projects or applications. You can explore a variety of applications driven by unique FieldDay machine learning models. Our extensive range of integration options and export capabilities makes it easy to embed a machine learning model into the platform of your choice. FieldDay also enables you to gather data directly using your phone's camera, while our user-friendly interface allows for straightforward and intuitive annotation during data collection, enabling you to build a custom dataset rapidly. Moreover, FieldDay provides the ability to preview and make adjustments to your models in real-time, ensuring an efficient and effective development process. This innovative tool empowers users to harness the power of AI like never before. -
32
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects. -
33
Amazon Augmented AI (A2I)
Amazon
Amazon Augmented AI (Amazon A2I) simplifies the creation of workflows necessary for the human evaluation of machine learning predictions. By providing an accessible platform for all developers, Amazon A2I alleviates the burdensome tasks associated with establishing human review systems and overseeing numerous human reviewers. In various machine learning applications, it is often essential for humans to assess predictions with low confidence to confirm their accuracy. For instance, when extracting data from scanned mortgage applications, human intervention may be needed in instances of subpar scans or illegible handwriting. However, developing effective human review systems can be both time-consuming and costly, as it requires the establishment of intricate processes or workflows, the development of bespoke software for managing review tasks and outcomes, and frequently, coordination of large teams of reviewers. This complexity can deter organizations from implementing necessary review mechanisms, but A2I aims to streamline the process and make it more feasible. -
34
LatticeFlow
LatticeFlow
Empower your machine learning teams to produce strong and efficient AI models by automatically diagnosing and enhancing your data and models. Our platform uniquely offers the ability to auto-diagnose both data and models, giving ML teams the tools they need to accelerate the delivery of effective AI solutions. It addresses challenges such as camera noise, sign stickers, shadows, and more, validated through real-world images where the model previously struggled. This approach has improved model accuracy by 0.2%, showcasing our commitment to refining AI performance. Our mission is to transform the development of future AI systems for widespread, trustworthy applications, whether in businesses, medical facilities, on the roads, or at home. Led by top AI professors and researchers from ETH Zurich, we possess extensive knowledge in formal methods, symbolic reasoning, and machine learning. We founded LatticeFlow with the ambition of creating the first-ever platform that empowers organizations to deploy AI models that are not only robust but also dependable in real-world scenarios, ensuring a higher standard for AI integration into daily life. By focusing on reliability and trust, we aim to set a new benchmark for the industry. -
35
Nyckel
Nyckel
FreeNyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complicated AI tools is hard. And confusing. Especially if you don't know machine learning. That’s why Nyckel built a platform that makes image and text classification easy. In just a few minutes, you can train an AI model to identify attributes of any image or text. Our goal is to help anyone spin up an image or text classification model in just minutes, regardless of technical knowledge. -
36
ElectrifAi
ElectrifAi
Achieving commercial value in just weeks, ElectrifAi effectively addresses high-value use cases across various industries. With the most extensive collection of pre-built machine learning models available, our solutions integrate effortlessly into your current workflows, yielding swift and dependable outcomes. You can benefit from our specialized knowledge through pre-trained, pre-structured, or entirely new models tailored to your needs. Developing machine learning systems can be fraught with challenges and take considerable time, but ElectrifAi offers a superior approach by delivering over 1,000 ready-to-deploy models that integrate smoothly into existing processes. Our capabilities extend to deploying proven machine learning models quickly, ensuring that you receive solutions without delay. We handle the creation of machine learning models, the data ingestion process, and the necessary data cleansing. Our team of domain experts collaborates with your existing data to train the most suitable model for your specific use case, ensuring optimal performance and efficiency. By leveraging our expertise, you can unlock the full potential of your data and turn insights into actionable strategies. -
37
SquareML
SquareML
SquareML is an innovative platform that eliminates the need for coding, making advanced data analytics and predictive modeling accessible to a wider audience, especially within the healthcare field. It empowers users with varying levels of technical ability to utilize machine learning tools without requiring in-depth programming skills. This platform excels in aggregating data from a range of sources, such as electronic health records, claims databases, medical devices, and health information exchanges. Among its standout features are a user-friendly data science lifecycle, generative AI models tailored for healthcare needs, the ability to convert unstructured data, a variety of machine learning models to forecast patient outcomes and disease advancement, and a collection of pre-existing models and algorithms. Additionally, it facilitates smooth integration with multiple healthcare data sources. By providing AI-driven insights, SquareML aims to simplify data workflows, elevate diagnostic precision, and ultimately enhance patient care outcomes, thereby fostering a healthier future for all. -
38
Create ML
Apple
Discover a revolutionary approach to training machine learning models directly on your Mac with Create ML, which simplifies the process while delivering robust Core ML models. You can train several models with various datasets all within one cohesive project. Utilize Continuity to preview your model's performance by connecting your iPhone's camera and microphone to your Mac, or simply input sample data for evaluation. The training process allows you to pause, save, resume, and even extend as needed. Gain insights into how your model performs against test data from your evaluation set and delve into essential metrics, exploring their relationships to specific examples, which can highlight difficult use cases, guide further data collection efforts, and uncover opportunities to enhance model quality. Additionally, if you want to elevate your training performance, you can integrate an external graphics processing unit with your Mac. Experience the lightning-fast training capabilities available on your Mac that leverage both CPU and GPU resources, and take your pick from a diverse selection of model types offered by Create ML. This tool not only streamlines the training process but also empowers users to maximize the effectiveness of their machine learning endeavors. -
39
DagsHub
DagsHub
$9 per monthDagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains. -
40
Keepsake
Replicate
FreeKeepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively. -
41
CentML
CentML
CentML enhances the performance of Machine Learning tasks by fine-tuning models for better use of hardware accelerators such as GPUs and TPUs, all while maintaining model accuracy. Our innovative solutions significantly improve both the speed of training and inference, reduce computation expenses, elevate the profit margins of your AI-driven products, and enhance the efficiency of your engineering team. The quality of software directly reflects the expertise of its creators. Our team comprises top-tier researchers and engineers specializing in machine learning and systems. Concentrate on developing your AI solutions while our technology ensures optimal efficiency and cost-effectiveness for your operations. By leveraging our expertise, you can unlock the full potential of your AI initiatives without compromising on performance. -
42
Oracle Data Science
Oracle
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making. -
43
navio
craftworks GmbH
Enhance your organization's machine learning capabilities through seamless management, deployment, and monitoring on a premier AI platform, all powered by navio. This tool enables the execution of a wide range of machine learning operations throughout your entire AI ecosystem. Transition your experiments from the lab to real-world applications, seamlessly incorporating machine learning into your operations for tangible business results. Navio supports you at every stage of the model development journey, from initial creation to deployment in a production environment. With automatic REST endpoint generation, you can easily monitor interactions with your model across different users and systems. Concentrate on exploring and fine-tuning your models to achieve optimal outcomes, while navio streamlines the setup of infrastructure and auxiliary features, saving you valuable time and resources. By allowing navio to manage the entire process of operationalizing your models, you can rapidly bring your machine learning innovations to market and start realizing their potential impact. This approach not only enhances efficiency but also boosts your organization's overall productivity in leveraging AI technologies. -
44
MyDataModels TADA
MyDataModels
$5347.46 per yearTADA by MyDataModels offers a top-tier predictive analytics solution that enables professionals to leverage their Small Data for business improvement through a user-friendly and easily deployable tool. With TADA, users can quickly develop predictive models that deliver actionable insights in a fraction of the time, transforming what once took days into mere hours thanks to an automated data preparation process that reduces time by 40%. This platform empowers individuals to extract valuable outcomes from their data without the need for programming expertise or advanced machine learning knowledge. By utilizing intuitive and transparent models composed of straightforward formulas, users can efficiently optimize their time and turn raw data into meaningful insights effortlessly across various platforms. The complexity of predictive model construction is significantly diminished as TADA automates the generative machine learning process, making it as simple as inputting data to receive a model output. Moreover, TADA allows for the creation and execution of machine learning models on a wide range of devices and platforms, ensuring accessibility through its robust web-based pre-processing capabilities, thereby enhancing operational efficiency and decision-making. -
45
Amazon SageMaker Studio Lab
Amazon
Amazon SageMaker Studio Lab offers a complimentary environment for machine learning (ML) development, ensuring users have access to compute resources, storage of up to 15GB, and essential security features without any charge, allowing anyone to explore and learn about ML. To begin using this platform, all that is required is an email address; there is no need to set up infrastructure, manage access controls, or create an AWS account. It enhances the process of model development with seamless integration with GitHub and is equipped with widely-used ML tools, frameworks, and libraries for immediate engagement. Additionally, SageMaker Studio Lab automatically saves your progress, meaning you can easily pick up where you left off without needing to restart your sessions. You can simply close your laptop and return whenever you're ready to continue. This free development environment is designed specifically to facilitate learning and experimentation in machine learning. With its user-friendly setup, you can dive into ML projects right away, making it an ideal starting point for both newcomers and seasoned practitioners.