Best Samza Alternatives in 2024
Find the top alternatives to Samza currently available. Compare ratings, reviews, pricing, and features of Samza alternatives in 2024. Slashdot lists the best Samza alternatives on the market that offer competing products that are similar to Samza. Sort through Samza alternatives below to make the best choice for your needs
-
1
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
2
ksqlDB
Confluent
Now that your data has been in motion, it is time to make sense. Stream processing allows you to extract instant insights from your data streams but it can be difficult to set up the infrastructure. Confluent created ksqlDB to support stream processing applications. Continuously processing streams of data from your business will make your data actionable. The intuitive syntax of ksqlDB allows you to quickly access and augment Kafka data, allowing development teams to create innovative customer experiences and meet data-driven operational requirements. ksqlDB is a single solution that allows you to collect streams of data, enrich them and then serve queries on new derived streams or tables. This means that there is less infrastructure to manage, scale, secure, and deploy. You can now focus on the important things -- innovation -- with fewer moving parts in your data architecture. -
3
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
4
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka®, is an open-source distributed streaming platform. -
5
Apache Beam
Apache Software Foundation
This is the easiest way to perform batch and streaming data processing. For mission-critical production workloads, write once and run anywhere data processing. Beam can read your data from any supported source, whether it's on-prem and in the cloud. Beam executes your business logic in both batch and streaming scenarios. Beam converts the results of your data processing logic into the most popular data sinks. A single programming model that can be used for both streaming and batch use cases. This is a simplified version of the code for all members of your data and applications teams. Apache Beam is extensible. TensorFlow Extended, Apache Hop and other projects built on Apache Beam are examples of Apache Beam's extensibility. Execute pipelines in multiple execution environments (runners), allowing flexibility and avoiding lock-in. Open, community-based development and support are available to help you develop your application and meet your specific needs. -
6
Baidu AI Cloud Stream Computing
Baidu AI Cloud
Baidu Stream Computing provides real-time data processing with low delay, high throughput, and high accuracy. It is compatible with Spark SQL and can process complex business logic through SQL statements. It also provides users with a full life cycle management of streaming-oriented computing jobs. As the upstream and downstream of stream computing, integrate deeply with multiple storage solutions of Baidu AI Cloud, including Baidu Kafka and RDS. Provide a comprehensive monitoring indicator for the job. The user can view monitoring indicators and set alarm rules to protect the task. -
7
VeloDB
VeloDB
VeloDB, powered by Apache Doris is a modern database for real-time analytics at scale. In seconds, micro-batch data can be ingested using a push-based system. Storage engine with upserts, appends and pre-aggregations in real-time. Unmatched performance in real-time data service and interactive ad hoc queries. Not only structured data, but also semi-structured. Not only real-time analytics, but also batch processing. Not only run queries against internal data, but also work as an federated query engine to access external databases and data lakes. Distributed design to support linear scalability. Resource usage can be adjusted flexibly to meet workload requirements, whether on-premise or cloud deployment, separation or integration. Apache Doris is fully compatible and built on this open source software. Support MySQL functions, protocol, and SQL to allow easy integration with other tools. -
8
Streaming service is a streaming service that allows developers and data scientists to stream real-time events. It is serverless and Apache Kafka compatible. Streaming can be integrated with Oracle Cloud Infrastructure, Database, GoldenGate, Integration Cloud, and Oracle Cloud Infrastructure (OCI). The service provides integrations for hundreds third-party products, including databases, big data, DevOps, and SaaS applications. Data engineers can easily create and manage big data pipelines. Oracle manages all infrastructure and platform management, including provisioning, scaling and security patching. Streaming can provide state management to thousands of consumers with the help of consumer groups. This allows developers to easily create applications on a large scale.
-
9
IBM® Event Streams, an event-streaming platform built on Apache Kafka open-source software, is a smart app that reacts to events as they occur. Event Streams is based upon years of IBM operational experience running Apache Kafka stream events for enterprises. Event Streams is ideal for mission-critical workloads. You can extend the reach and reach of your enterprise assets by connecting to a variety of core systems and using a scalable RESTAPI. Disaster recovery is made easier by geo-replication and rich security. Use the CLI to take advantage of IBM productivity tools. Replicate data between Event Streams deployments during a disaster-recovery scenario.
-
10
Arroyo
Arroyo
Scale from 0 to millions of events every second. Arroyo is shipped as a single compact binary. Run locally on MacOS, Linux or Kubernetes for development and deploy to production using Docker or Kubernetes. Arroyo is an entirely new stream processing engine that was built from the ground-up to make real time easier than batch. Arroyo has been designed so that anyone with SQL knowledge can build reliable, efficient and correct streaming pipelines. Data scientists and engineers are able to build real-time dashboards, models, and applications from end-to-end without the need for a separate streaming expert team. SQL allows you to transform, filter, aggregate and join data streams with results that are sub-second. Your streaming pipelines should not page someone because Kubernetes rescheduled your pods. Arroyo can run in a modern, elastic cloud environment, from simple container runtimes such as Fargate, to large, distributed deployments using the Kubernetes logo. -
11
HarperDB
HarperDB
FreeHarperDB is an integrated distributed systems platform which combines database, caching and application functions into one technology. It allows you to deliver global back-end services at a lower cost, with higher performance and less effort. Install user-programmed apps and pre-built additions on top of data for a back end with ultra-low latencies. Distributed database with a high throughput per second, delivering orders of magnitude higher than NoSQL alternatives. Native real-time pub/sub data processing and communication via MQTT interfaces, WebSockets, and HTTP interfaces. HarperDB provides powerful data-in motion capabilities without adding additional services such as Kafka. Focus on features that will help your business grow, rather than fighting complicated infrastructure. You can't slow down the speed of light but you can reduce the amount of light between your users' data and them. -
12
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
13
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
14
Amazon Kinesis
Amazon
You can quickly collect, process, analyze, and analyze video and data streams. Amazon Kinesis makes it easy for you to quickly and easily collect, process, analyze, and interpret streaming data. Amazon Kinesis provides key capabilities to process streaming data at any scale cost-effectively, as well as the flexibility to select the tools that best fit your application's requirements. Amazon Kinesis allows you to ingest real-time data, including video, audio, website clickstreams, application logs, and IoT data for machine learning, analytics, or other purposes. Amazon Kinesis allows you to instantly process and analyze data, rather than waiting for all the data to be collected before processing can begin. Amazon Kinesis allows you to ingest buffer and process streaming data instantly, so you can get insights in seconds or minutes, instead of waiting for hours or days. -
15
WarpStream
WarpStream
$2,987 per monthWarpStream, an Apache Kafka compatible data streaming platform, is built directly on object storage. It has no inter-AZ network costs, no disks that need to be managed, and it's infinitely scalable within your VPC. WarpStream is deployed in your VPC as a stateless, auto-scaling binary agent. No local disks are required to be managed. Agents stream data directly into and out of object storage without buffering on local drives and no data tiering. Instantly create new "virtual" clusters in our control plan. Support multiple environments, teams or projects without having to manage any dedicated infrastructure. WarpStream is Apache Kafka protocol compatible, so you can continue to use your favorite tools and applications. No need to rewrite or use a proprietary SDK. Simply change the URL of your favorite Kafka library in order to start streaming. Never again will you have to choose between budget and reliability. -
16
Confluent
Confluent
Apache Kafka®, with Confluent, has an infinite retention. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming allows you to innovate and win by being both highly-scalable and real-time. Ever wonder how your rideshare app analyses massive amounts of data from multiple sources in order to calculate real-time ETA. Wondering how your credit card company analyzes credit card transactions from all over the world and sends fraud notifications in real time? Event streaming is the answer. Microservices are the future. A persistent bridge to the cloud can enable your hybrid strategy. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. There are many other options. -
17
Materialize
Materialize
$0.98 per hourMaterialize is a reactive database that provides incremental view updates. Our standard SQL allows developers to easily work with streaming data. Materialize connects to many external data sources without any pre-processing. Connect directly to streaming sources such as Kafka, Postgres databases and CDC or historical data sources such as files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are kept current and updated as new data streams are added. With incrementally-updated views, developers can easily build data visualizations or real-time applications. It is as easy as writing a few lines SQL to build with streaming data. -
18
Amazon Managed Service for Apache Flink
Amazon
$0.11 per hourAmazon Managed Service For Apache Flink is used by thousands of customers to run stream-processing applications. Amazon Managed Service Apache Flink allows you to transform and analyze streaming data using Apache Flink in real-time and integrate applications with AWS services. There are no clusters or servers to manage and no computing infrastructure to install. You only pay for the resources that you use. You can build and run Apache Flink apps without having to manage resources or clusters, or set up infrastructure. Process gigabytes per second, with latencies of subseconds and respond to events instantly. Multi-AZ deployments, APIs for lifecycle management and APIs to manage application lifecycles help you deploy highly available and durable apps. Create applications that transform data and deliver it to Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service. -
19
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
20
Spark Streaming
Apache Software Foundation
Spark Streaming uses Apache Spark's language-integrated API for stream processing. It allows you to write streaming jobs in the same way as you write batch jobs. It supports Java, Scala, and Python. Spark Streaming recovers lost work as well as operator state (e.g. Without any additional code, Spark Streaming recovers both lost work and operator state (e.g. sliding windows) right out of the box. Spark Streaming allows you to reuse the same code for batch processing and join streams against historical data. You can also run ad-hoc queries about stream state by running on Spark. Spark Streaming allows you to create interactive applications that go beyond analytics. Apache Spark includes Spark Streaming. It is updated with every Spark release. Spark Streaming can be run on Spark's standalone mode or other supported cluster resource mangers. It also has a local run mode that can be used for development. Spark Streaming uses ZooKeeper for high availability in production. -
21
Astra Streaming
DataStax
Responsive apps keep developers motivated and users engaged. With the DataStax Astra streaming service platform, you can meet these ever-increasing demands. DataStax Astra Streaming, powered by Apache Pulsar, is a cloud-native messaging platform and event streaming platform. Astra Streaming lets you build streaming applications on top a multi-cloud, elastically scalable and event streaming platform. Apache Pulsar is the next-generation event streaming platform that powers Astra Streaming. It provides a unified solution to streaming, queuing and stream processing. Astra Streaming complements Astra DB. Astra Streaming allows existing Astra DB users to easily create real-time data pipelines from and to their Astra DB instances. Astra Streaming allows you to avoid vendor lock-in by deploying on any major public cloud (AWS, GCP or Azure) compatible with open source Apache Pulsar. -
22
Apache NiFi
Apache Software Foundation
A reliable, easy-to-use, and powerful system to process and distribute data. Apache NiFi supports powerful, scalable directed graphs for data routing, transformation, system mediation logic, and is scalable. Apache NiFi's high-level capabilities and goals include a web-based user interface that provides seamless design, control, feedback and monitoring. Highly configurable, loss-tolerant, low latency and high throughput. Dynamic prioritization is also possible. Flow can be modified at runtime by back pressure, data provenance, and track dataflow from start to finish. This is a flexible system that is extensible. You can build your own processors. This allows for rapid development and efficient testing. Secure, SSL, SSH and HTTPS encryption, as well as encrypted content. Multi-tenant authorization, internal authorization/policy administration. NiFi includes a variety of web applications, including web UI, web API, documentation and custom UI's. You will need to map to the root path. -
23
Apache Flink
Apache Software Foundation
Apache Flink is a distributed processing engine and framework for stateful computations using unbounded and bounded data streams. Flink can be used in all cluster environments and perform computations at any scale and in-memory speed. A stream of events can be used to produce any type of data. All data, including credit card transactions, machine logs, sensor measurements, and user interactions on a website, mobile app, are generated as streams. Apache Flink excels in processing both unbounded and bound data sets. Flink's runtime can run any type of application on unbounded stream streams thanks to its precise control of state and time. Bounded streams are internal processed by algorithms and data structure that are specifically designed to process fixed-sized data sets. This results in excellent performance. Flink can be used with all of the resource managers previously mentioned. -
24
Apache Doris
The Apache Software Foundation
FreeApache Doris is an advanced data warehouse for real time analytics. It delivers lightning fast analytics on real-time, large-scale data. Ingestion of micro-batch data and streaming data within a second. Storage engine with upserts, appends and pre-aggregations in real-time. Optimize for high-concurrency, high-throughput queries using columnar storage engine, cost-based query optimizer, and vectorized execution engine. Federated querying for data lakes like Hive, Iceberg, and Hudi and databases like MySQL and PostgreSQL. Compound data types, such as Arrays, Maps and JSON. Variant data types to support auto datatype inference for JSON data. NGram bloomfilter for text search. Distributed design for linear scaling. Workload isolation, tiered storage and efficient resource management. Supports shared-nothing as well as the separation of storage from compute. -
25
SelectDB
SelectDB
$0.22 per hourSelectDB is an advanced data warehouse built on Apache Doris. It supports rapid query analysis of large-scale, real-time data. Clickhouse to Apache Doris to separate the lake warehouse, and upgrade the lake storage. Fast-hand OLAP system carries out nearly 1 billion queries every day in order to provide data services for various scenes. The original lake warehouse separation was abandoned due to problems with storage redundancy and resource seizure. Also, it was difficult to query and adjust. It was decided to use Apache Doris lakewarehouse, along with Doris's materialized views rewriting capability and automated services to achieve high-performance query and flexible governance. Write real-time data within seconds and synchronize data from databases and streams. Data storage engine with real-time update and addition, as well as real-time polymerization. -
26
Amazon Data Firehose
Amazon
$0.075 per monthEasy to capture, transform and load streaming data. Create a stream of data, select the destination and start streaming real time data in just a few simple clicks. Automate the provisioning and scaling of compute, memory and network resources, without any ongoing administration. Transform streaming data into formats such as Apache Parquet and dynamically partition streaming without building your own pipelines. Amazon Data Firehose is the fastest way to acquire data streams, transform them, and then deliver them to data lakes, warehouses, or analytics services. Amazon Data Firehose requires you to create a stream that includes a destination, a source and the transformations required. Amazon Data Firehose continuously processes a stream, scales automatically based on data availability, and delivers the results within seconds. Select the source of your data stream, or write data with the Firehose Direct PUT (API) API. -
27
Cloudera DataFlow
Cloudera
You can manage your data from the edge to the cloud with a simple, no-code approach to creating sophisticated streaming applications. -
28
Yandex Data Streams
Yandex
$0.086400 per GBSimplifies data transfer between components in microservices architectures. When used as a microservice transport, it simplifies integration and increases reliability. It also improves scaling. Read and write data near real-time. Set the data throughput to your needs. You can configure the resources to process data streams in granular detail, from 100 KB/s up to 100 MB/s. Yandex Data Transfer allows you to send a single data stream to multiple destinations with different retention policies. Data is automatically replicated over multiple geographically dispersed availability zones. Once created, data streams can be managed centrally via the management console or API. Yandex Data Streams is able to collect data continuously from sources such as website browsing histories, system and application logs, or social media feeds. Yandex Data Streams can continuously collect data from sources like website browsing histories, logs of application, etc. -
29
Google Cloud Datastream
Google
Change data capture and replication service that is serverless and easy to use. Access to streaming data in MySQL, PostgreSQL and AlloyDB databases. BigQuery offers near-real-time analytics. Easy-to use setup with built-in security connectivity for faster time to value. A serverless platform which automatically scales without the need to provision or manage resources. Log-based mechanism reduces the load on source databases and any potential disruption. Synchronize data reliably across heterogeneous storage systems, databases, and applications with low latency while minimising impact on source performance. Easy-to-use and serverless service that scales up and down seamlessly and does not require infrastructure management will get you up and running quickly. Connect and integrate your data with the best Google Cloud services, including BigQuery, Spanner Dataflow and Data Fusion. -
30
Nussknacker
Nussknacker
0Nussknacker allows domain experts to use a visual tool that is low-code to help them create and execute real-time decisioning algorithm instead of writing code. It is used to perform real-time actions on data: real-time marketing and fraud detection, Internet of Things customer 360, Machine Learning inferring, and Internet of Things customer 360. A visual design tool for decision algorithm is an essential part of Nussknacker. It allows non-technical users, such as analysts or business people, to define decision logic in a clear, concise, and easy-to-follow manner. With a click, scenarios can be deployed for execution once they have been created. They can be modified and redeployed whenever there is a need. Nussknacker supports streaming and request-response processing modes. It uses Kafka as its primary interface in streaming mode. It supports both stateful processing and stateless processing. -
31
Redpanda
Redpanda Data
You can deliver customer experiences like never before with breakthrough data streaming capabilities Both the ecosystem and Kafka API are compatible. Redpanda BulletPredictable low latency with zero data loss. Redpanda BulletUp to 10x faster than Kafka Redpanda BulletEnterprise-grade support and hotfixes. Redpanda BulletAutomated backups for S3/GCS. Redpanda Bullet100% freedom of routine Kafka operations. Redpanda BulletSupports for AWS/GCP. Redpanda was built from the ground up to be easy to install and get running quickly. Redpanda's power will be evident once you have tried it in production. You can use the more advanced Redpanda functions. We manage all aspects of provisioning, monitoring, as well as upgrades. We do not have access to your cloud credentials. Sensitive data never leaves your environment. You can have it provisioned, operated, maintained, and updated for you. Configurable instance types. As your needs change, you can expand the cluster. -
32
Google Cloud Dataflow
Google
Unified stream and batch data processing that is serverless, fast, cost-effective, and low-cost. Fully managed data processing service. Automated provisioning of and management of processing resource. Horizontal autoscaling worker resources to maximize resource use Apache Beam SDK is an open-source platform for community-driven innovation. Reliable, consistent processing that works exactly once. Streaming data analytics at lightning speed Dataflow allows for faster, simpler streaming data pipeline development and lower data latency. Dataflow's serverless approach eliminates the operational overhead associated with data engineering workloads. Dataflow allows teams to concentrate on programming and not managing server clusters. Dataflow's serverless approach eliminates operational overhead from data engineering workloads, allowing teams to concentrate on programming and not managing server clusters. Dataflow automates provisioning, management, and utilization of processing resources to minimize latency. -
33
Apache Storm
Apache Software Foundation
Apache Storm is an open-source distributed realtime computing system that is free and open-source. Apache Storm makes it simple to process unbounded streams and data reliably, much like Hadoop did for batch processing. Apache Storm is easy to use with any programming language and is a lot fun! Apache Storm can be used for many purposes: realtime analytics and online machine learning. It can also be used with any programming language. Apache Storm is fast. A benchmark measured it at more than a million tuples per second per node. It is highly scalable, fault-tolerant and guarantees that your data will be processed. It is also easy to set up. Apache Storm can be integrated with the queueing and databases technologies you already use. Apache Storm topology processes streams of data in arbitrarily complex ways. It also partitions the streams between each stage of the computation as needed. Learn more in the tutorial. -
34
Informatica Data Engineering Streaming
Informatica
AI-powered Informatica Data Engineering streaming allows data engineers to ingest and process real-time streaming data in order to gain actionable insights. -
35
Apache Flume
Apache Software Foundation
Flume is a reliable, distributed service that efficiently collects, aggregates, and moves large amounts of log data. Flume's architecture is based on streaming data flows and is simple and flexible. It is robust and fault-tolerant, with many failovers and recovery options. It is based on a simple extensible data structure that allows for online analytical applications. Flume 1.8.0 has been released by the Apache Flume team. Flume is a distributed, reliable and available service that efficiently collects, aggregates, and moves large amounts of streaming event information. -
36
Estuary Flow
Estuary
$200/month Estuary Flow, a new DataOps platform, empowers engineering teams with the ability to build data-intensive real-time applications at scale and with minimal friction. This platform allows teams to unify their databases, pub/sub and SaaS systems around their data without having to invest in new infrastructure or development. -
37
3forge
3forge
The issues facing your enterprise may be complex. The solution doesn't have to be complex. 3forge, the low-code platform with high flexibility and speed, allows enterprise application development to be done in record time. Reliability? Check. Scalability? Deliverability? Deliverability? In record time. Even for the most complex data sets and work flows. You no longer need to choose with 3forge. Data integration, virtualization and processing, visualization and workflows are all available in one place, allowing you to solve the most complex real-time data challenges. 3forge's award-winning technology allows developers to deploy mission critical applications in record time. 3forge's focus is on data integration and virtualization. It also focuses on processing and visualization. -
38
Timeplus
Timeplus
$199 per monthTimeplus is an easy-to-use, powerful and cost-effective platform for stream processing. All in one binary, easily deployable anywhere. We help data teams in organizations of any size and industry process streaming data and historical data quickly, intuitively and efficiently. Lightweight, one binary, no dependencies. Streaming analytics and historical functionality from end-to-end. 1/10 of the cost of comparable open source frameworks Transform real-time data from the market and transactions into real-time insight. Monitor financial data using append-only streams or key-value streams. Implement real-time feature pipelines using Timeplus. All infrastructure logs, metrics and traces are consolidated on one platform. In Timeplus we support a variety of data sources through our web console UI. You can also push data using REST API or create external streams, without copying data to Timeplus. -
39
Aiven
Aiven
$200.00 per monthAiven manages your open-source data infrastructure in the cloud so that you don't have. Developers can do what is best for them: create applications. We do what we love: manage cloud data infrastructure. All solutions are open-source. You can also freely transfer data between clouds and create multi-cloud environments. You will know exactly what you will be paying and why. We combine storage, networking, and basic support costs. We will keep your Aiven software up and running. We will be there to help you if there is ever an issue. In 10 minutes, you can deploy a service on Aiven. 1. Register now - No credit card information required 2. Select your open-source service and choose the region and cloud to deploy to it 3. Select your plan and get $300 in credit 4. Click "Create service" to configure your data sources -
40
Tinybird
Tinybird
$0.07 per processed GBPipes is a new way of creating queries and shaping data. It's inspired by Python Notebooks. This is a simplified way to increase performance without sacrificing complexity. Splitting your query into multiple nodes makes it easier to develop and maintain. You can activate your production-ready API endpoints in one click. Transforms happen on-the-fly, so you always have the most current data. You can share secure access to your data with one click, and get consistent results. Tinybird scales linearly, so don't worry if you have high traffic. Imagine if you could transform any Data Stream or CSV file into a secure real-time analytics API endpoint in a matter minutes. We believe in high-frequency decision making for all industries, including retail, manufacturing and telecommunications. -
41
Leo
Leo
$251 per monthTransform your data into a live stream that is immediately available and ready for use. Leo makes event sourcing simpler by making it easy for you to create, visualize and monitor your data flows. You no longer have to be restricted by legacy systems once you unlock your data. Your developers and stakeholders will be happy with the dramatically reduced development time. Microservice architectures can be used to innovate and increase agility. Microservices are all about data. To make microservices a reality, an organization must have a reliable and repeatable backbone of data. Your custom app should support full-fledged searching. It won't be difficult to add and maintain a search database if you have the data. -
42
TapData
TapData
CDC-based live-data platform for heterogeneous data replication, real-time integration, or building a data warehouse in real-time. TapData used CDC to sync data from the production line stored in DB2 or Oracle to the modern database. This enabled AI-augmented real time dispatch software to optimize semiconductor production line processes. Real-time data enabled instant decision-making within the RTD software, resulting in faster turnaround times and increased yield. Customer, as one of the largest telcos in the world, has many regional systems to cater to local customers. Customers were able build an order center by syncing data from different sources and locations and aggregating it into a central data store. TapData integrates inventory data across 500+ stores to provide real-time insights on stock levels and customer preferences. This enhances supply chain efficiency. -
43
Aerospike
Aerospike
Aerospike is the global leader for next-generation, real time NoSQL data solutions at any scale. Aerospike helps enterprises overcome seemingly impossible data bottlenecks and compete with other companies at a fraction of the cost and complexity of legacy NoSQL databases. Aerospike's Hybrid Memory Architecture™ is a patented technology that unlocks the full potential of modern hardware and delivers previously unimaginable value. It does this by delivering unimaginable value from huge amounts of data at both the edge, core, and in the cloud. Aerospike empowers customers with the ability to instantly combat fraud, dramatically increase shopping cart sizes, deploy global digital payment networks, and provide instant, one-to-1 personalization for millions. Aerospike customers include Airtel and Banca d'Italia as well as Snap, Verizon Media, Wayfair, PayPal, Snap, Verizon Media, and Nielsen. The company's headquarters is in Mountain View, California. Additional locations are in London, Bengaluru, India, and Tel Aviv in Israel. -
44
Insigna
Insigna
Insigna - The complete Platform for Real-time Analytics and Data Management. Insigna offers integration, automated processing, transformation, data preparation and real-time analytics to derive and deliver intelligence to various stakeholders. Insigna enables connectivity with the most popular network communication protocols, data stores, enterprise applications, and cloud platforms. Coupled with a rich set of out-of-the-box data transformation capabilities, enterprises greatly benefit from the opportunities offered by operations data generated in real-time. -
45
Apache Spark
Apache Software Foundation
Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio. -
46
IBM Streams
IBM
1 RatingIBM Streams analyzes a wide range of streaming data, including unstructured text, video and audio, and geospatial and sensor data. This helps organizations to spot opportunities and risks, and make decisions in real-time. -
47
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question. -
48
Memgraph
Memgraph
Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data. -
49
Decodable
Decodable
$0.20 per task per hourNo more low-level code or gluing together complex systems. SQL makes it easy to build and deploy pipelines quickly. Data engineering service that allows developers and data engineers to quickly build and deploy data pipelines for data-driven apps. It is easy to connect to and find available data using pre-built connectors for messaging, storage, and database engines. Each connection you make will result in a stream of data to or from the system. You can create your pipelines using SQL with Decodable. Pipelines use streams to send and receive data to and from your connections. Streams can be used to connect pipelines to perform the most difficult processing tasks. To ensure data flows smoothly, monitor your pipelines. Create curated streams that can be used by other teams. To prevent data loss due to system failures, you should establish retention policies for streams. You can monitor real-time performance and health metrics to see if everything is working. -
50
Hydrolix
Hydrolix
$2,237 per monthHydrolix is a streaming lake of data that combines decoupled archiving, indexed searching, and stream processing for real-time query performance on terabyte scale at a dramatically lower cost. CFOs love that data retention costs are 4x lower. Product teams appreciate having 4x more data at their disposal. Scale up resources when needed and down when not. Control costs by fine-tuning resource consumption and performance based on workload. Imagine what you could build if you didn't have budget constraints. Log data from Kafka, Kinesis and HTTP can be ingested, enhanced and transformed. No matter how large your data, you will only get the data that you need. Reduce latency, costs, and eliminate timeouts and brute-force queries. Storage is decoupled with ingest and queries, allowing them to scale independently to meet performance and cost targets. Hydrolix's HDX (high-density compress) reduces 1TB to 55GB.