Best RunLve Alternatives in 2024
Find the top alternatives to RunLve currently available. Compare ratings, reviews, pricing, and features of RunLve alternatives in 2024. Slashdot lists the best RunLve alternatives on the market that offer competing products that are similar to RunLve. Sort through RunLve alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
620 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. -
2
Qloo
Qloo
23 RatingsQloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata. -
3
Amazon SageMaker
Amazon
Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility. -
4
Composable DataOps Platform
Composable Analytics
4 RatingsComposable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data. -
5
You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
-
6
cnvrg.io
cnvrg.io
An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure. -
7
Zerve AI
Zerve AI
With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation. -
8
A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
-
9
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
10
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question. -
11
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
12
Key Ward
Key Ward
€9,000 per yearEasily extract, transform, manage & process CAD data, FE data, CFD and test results. Create automatic data pipelines to support machine learning, deep learning, and ROM. Data science barriers can be removed without coding. Key Ward's platform, the first engineering no-code end-to-end solution, redefines how engineers work with their data. Our software allows engineers to handle multi-source data with ease, extract direct value using our built-in advanced analytical tools, and build custom machine and deep learning model with just a few clicks. Automatically centralize, update and extract your multi-source data, then sort, clean and prepare it for analysis, machine and/or deep learning. Use our advanced analytics tools to correlate, identify patterns, and find dependencies in your experimental & simulator data. -
13
DataRobot
DataRobot
AI Cloud is a new approach that addresses the challenges and opportunities presented by AI today. A single system of records that accelerates the delivery of AI to production in every organization. All users can collaborate in a single environment that optimizes the entire AI lifecycle. The AI Catalog facilitates seamlessly finding, sharing and tagging data. This helps to increase collaboration and speed up time to production. The catalog makes it easy to find the data you need to solve a business problem. It also ensures security, compliance, consistency, and consistency. Contact Support if your database is protected by a network rule that allows connections only from certain IP addresses. An administrator will need to add addresses to your whitelist. -
14
Obviously AI
Obviously AI
$75 per monthAll the steps involved in building machine learning algorithms and predicting results, all in one click. Data Dialog allows you to easily shape your data without having to wrangle your files. Your prediction reports can be shared with your team members or made public. Let anyone make predictions on your model. Our low-code API allows you to integrate dynamic ML predictions directly into your app. Real-time prediction of willingness to pay, score leads, and many other things. AI gives you access to the most advanced algorithms in the world, without compromising on performance. Forecast revenue, optimize supply chain, personalize your marketing. Now you can see what the next steps are. In minutes, you can add a CSV file or integrate with your favorite data sources. Select your prediction column from the dropdown and we'll automatically build the AI. Visualize the top drivers, predicted results, and simulate "what-if?" scenarios. -
15
Analance
Ducen
Combine Data Science, Business Intelligence and Data Management Capabilities into One Integrated, Self-Serve Platform. Analance is an end-to-end platform with robust and salable features that combines Data Science and Advanced Analytics, Business Intelligence and Data Management into a single integrated platform. It provides core analytical processing power to ensure that data insights are easily accessible to all, performance remains consistent over time, and business objectives can be met within a single platform. Analance focuses on making quality data into accurate predictions. It provides both citizen data scientists and data scientists with pre-built algorithms as well as an environment for custom programming. Company - Overview Ducen IT provides advanced analytics, business intelligence, and data management to Fortune 1000 companies through its unique data science platform Analance. -
16
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
17
OpenText Magellan
OpenText
Machine Learning and Predictive Analytics Platform. Advanced artificial intelligence is a pre-built platform for machine learning and big-data analytics that can enhance data-driven decision making. OpenText Magellan makes predictive analytics easy to use and provides flexible data visualizations that maximize business intelligence. Artificial intelligence software reduces the need to manually process large amounts of data. It presents valuable business insights in a manner that is easily accessible and relevant to the organization's most important objectives. Organizations can enhance business processes by using a curated combination of capabilities such as predictive modeling, data discovery tools and data mining techniques. IoT data analytics is another way to use data to improve decision-making based on real business intelligence. -
18
Zepl
Zepl
All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github. -
19
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
20
StreamFlux
Fractal
Data is essential when it comes to constructing, streamlining and growing your company. Unfortunately, it can be difficult to get the most out of data. Many organizations face incompatibilities, slow results, poor access to data and spiraling costs. Leaders who can transform raw data into real results are the ones who will succeed in today's competitive landscape. This is possible by empowering everyone in your company to be able analyze, build, and collaborate on machine learning and AI solutions. Streamflux is a one stop shop for all your data analytics and AI needs. Our self-service platform gives you the freedom to create end-to-end data solutions. It uses models to answer complex questions, and evaluates user behavior. You can transform raw data into real business impact in days instead of months, whether you are generating recommendations or predicting customer turnover and future revenue. -
21
Outerbounds
Outerbounds
With open-source Metaflow, you can design and develop data-intensive projects. You can scale them up and deploy them on the fully managed Outerbounds platform. All your data science and ML projects can be managed from one platform. Access data securely from existing data warehouses. A cluster that is optimized for cost and scale can be used to compute. 24/7 managed orchestration of production workflows. Results can be used to power any application. Your engineers will give your data scientists superpowers. Outerbounds Platform enables data scientists to quickly develop, experiment at scale, then deploy to production with confidence. All within the boundaries of your engineers' policies and processes, all running on your cloud account, fully supported by us. Security is part of our DNA, not at its perimeter. Through multiple layers of security, the platform adapts to your policies. Centralized authentication, a strict permission limit, and granular task execution role. -
22
Oracle Data Science
Oracle
Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results. -
23
Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
-
24
Deepnote
Deepnote
FreeDeepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud. -
25
Incedo Lighthouse
Incedo
Platform for developing use-case specific solutions powered by cloud native AI powered Decision Automation platform. Incedo LighthouseTM harnesses AI's power in a low-code environment to deliver action recommendations and insights every day by leveraging the superfast Big Data capabilities. Incedo LighthouseTM allows you to increase your revenue potential by optimizing customer experiences, and delivering hyper-personalized recommendation. Our AI- and ML-driven models allow personalization throughout the customer lifecycle. Incedo LighthouseTM can help you reduce costs by speeding the process of problem discovery, insight generation, and execution of targeted actions. Our ML-driven metric monitoring and root cause analysis models power the platform. Incedo LighthouseTM monitors data quality and uses AI/ML to resolve some quality issues. This improves trust in data. -
26
IBM Cloud Pak for Data
IBM
$699 per monthUnutilized data is the biggest obstacle to scaling AI-powered decision making. IBM Cloud Pak®, for Data is a unified platform that provides a data fabric to connect, access and move siloed data across multiple clouds or on premises. Automate policy enforcement and discovery to simplify access to data. A modern cloud data warehouse integrates to accelerate insights. All data can be protected with privacy and usage policy enforcement. To gain faster insights, use a modern, high-performance cloud storage data warehouse. Data scientists, analysts, and developers can use a single platform to create, deploy, and manage trusted AI models in any cloud. -
27
PredictSense
Winjit
PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort. -
28
Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
-
29
Azure Machine Learning
Microsoft
Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported. -
30
FutureAnalytica
FutureAnalytica
Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform. -
31
Emly Labs
Emly Labs
$99/month Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction. -
32
Dataiku DSS
Dataiku
1 RatingData analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs. -
33
Access, explore, and prepare data while discovering new patterns and trends. SAS Visual Data Science allows you to create and share interactive visualizations and reports using a single interface. It uses machine learning, text analysis, and econometrics to improve forecasting and optimization. Additionally, it registers SAS and open source models within projects and as standalone models. Visualize your data and find relevant relationships. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes for better, data-driven decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions.
-
34
Graviti
Graviti
Unstructured data is the future for AI. This future is now possible. Build an ML/AI pipeline to scale all your unstructured data from one place. Graviti allows you to use better data to create better models. Learn about Graviti, the data platform that allows AI developers to manage, query and version control unstructured data. Quality data is no longer an expensive dream. All your metadata, annotations, and predictions can be managed in one place. You can customize filters and see the results of filtering to find the data that meets your needs. Use a Git-like system to manage data versions and collaborate. Role-based access control allows for safe and flexible team collaboration. Graviti's built in marketplace and workflow creator makes it easy to automate your data pipeline. No more grinding, you can quickly scale up to rapid model iterations. -
35
Darwin
SparkCognition
$4000Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises. -
36
Azure Data Science Virtual Machines
Microsoft
$0.005DSVMs are Azure Virtual Machine Images that have been pre-configured, configured, and tested with many popular tools that are used for data analytics and machine learning. A consistent setup across the team promotes collaboration, Azure scale, management, Near-Zero Setup and full cloud-based desktop to support data science. For one to three classroom scenarios or online courses, it is easy and quick to set up. Analytics can be run on all Azure hardware configurations, with both vertical and horizontal scaling. Only pay for what you use and when you use it. Pre-configured Deep Learning tools are readily available in GPU clusters. To make it easy to get started with the various tools and capabilities, such as Neural Networks (PYTorch and Tensorflow), templates and examples are available on the VMs. ), Data Wrangling (R, Python, Julia and SQL Server). -
37
Oracle Machine Learning
Oracle
Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface. -
38
Google Cloud Vertex AI Workbench
Google
$10 per GBOne development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models. -
39
Alteryx
Alteryx
Alteryx AI Platform will help you enter a new age of analytics. Empower your organization through automated data preparation, AI powered analytics, and accessible machine learning - all with embedded governance. Welcome to a future of data-driven decision making for every user, team and step. Empower your team with an intuitive, easy-to-use user experience that allows everyone to create analytical solutions that improve productivity and efficiency. Create an analytics culture using an end-toend cloud analytics platform. Data can be transformed into insights through self-service data preparation, machine learning and AI generated insights. Security standards and certifications are the best way to reduce risk and ensure that your data is protected. Open API standards allow you to connect with your data and applications. -
40
TrueFoundry
TrueFoundry
$5 per monthTrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently. -
41
H2O.ai
H2O.ai
H2O.ai, the open-source leader in AI and machinelearning, has a mission to democratize AI. Our enterprise-ready platforms, which are industry-leading, are used by thousands of data scientists from over 20,000 organizations worldwide. Every company can become an AI company in financial, insurance, healthcare and retail. We also empower them to deliver real value and transform businesses. -
42
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
43
Xilinx
Xilinx
The Xilinx AI development platform for AI Inference on Xilinx hardware platforms consists optimized IP, tools and libraries, models, examples, and models. It was designed to be efficient and easy-to-use, allowing AI acceleration on Xilinx FPGA or ACAP. Supports mainstream frameworks as well as the most recent models that can perform diverse deep learning tasks. A comprehensive collection of pre-optimized models is available for deployment on Xilinx devices. Find the closest model to your application and begin retraining! This powerful open-source quantizer supports model calibration, quantization, and fine tuning. The AI profiler allows you to analyze layers in order to identify bottlenecks. The AI library provides open-source high-level Python and C++ APIs that allow maximum portability from the edge to the cloud. You can customize the IP cores to meet your specific needs for many different applications. -
44
Saturn Cloud
Saturn Cloud
$0.005 per GB per hour 91 RatingsSaturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack. -
45
C3 AI Suite
C3.ai
1 RatingEnterprise AI applications can be built, deployed, and operated. C3 AI®, Suite uses a unique model driven architecture to speed delivery and reduce the complexity of developing enterprise AI apps. The C3 AI model-driven architecture allows developers to create enterprise AI applications using conceptual models, rather than long code. This has significant benefits: AI applications and models can be used to optimize processes for every product or customer across all regions and businesses. You will see results in just 1-2 quarters. Also, you can quickly roll out new applications and capabilities. You can unlock sustained value - hundreds to billions of dollars annually - through lower costs, higher revenue and higher margins. C3.ai's unified platform, which offers data lineage as well as governance, ensures enterprise-wide governance for AI. -
46
CognitiveScale Cortex AI
CognitiveScale
To develop AI solutions, engineers must have a resilient, open, repeatable engineering approach to ensure quality and agility. These efforts have not been able to address the challenges of today's complex environment, which is filled with a variety of tools and rapidly changing data. Platform for collaborative development that automates the control and development of AI applications across multiple persons. To predict customer behavior in real-time, and at scale, we can derive hyper-detailed customer profiles using enterprise data. AI-powered models that can continuously learn and achieve clearly defined business results. Allows organizations to demonstrate compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform is designed to address enterprise AI use cases using modular platform offerings. Customers use and leverage its capabilities in microservices as part of their enterprise AI initiatives. -
47
Evidently AI
Evidently AI
$500 per monthThe open-source ML observability Platform. From validation to production, evaluate, test, and track ML models. From tabular data up to NLP and LLM. Built for data scientists and ML Engineers. All you need to run ML systems reliably in production. Start with simple ad-hoc checks. Scale up to the full monitoring platform. All in one tool with consistent APIs and metrics. Useful, beautiful and shareable. Explore and debug a comprehensive view on data and ML models. Start in a matter of seconds. Test before shipping, validate in production, and run checks with every model update. By generating test conditions based on a reference dataset, you can skip the manual setup. Monitor all aspects of your data, models and test results. Proactively identify and resolve production model problems, ensure optimal performance and continually improve it. -
48
Predictive modeling with Machine Learning and Explainable Ai. FICO®, Analytics Workbench™, is a comprehensive suite of state-of the-art analytic authoring software that empowers companies to make better business decisions throughout the customer lifecycle. Data scientists can use it to build superior decisioning abilities using a variety of predictive data modeling tools, including the most recent machine learning (ML), and explainable AI (xAI) methods. FICO's innovative intellectual property enables us to combine the best of open-source data science and machine learning to provide world-class analytical capabilities to find, combine, and operationalize data predictive signals. Analytics Workbench is built upon the FICO®, leading platform that allows for new predictive models and strategies to easily be put into production.
-
49
ZinkML
ZinkML Technologies
ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions. -
50
SAS Viya
SAS
SAS®, Viya®, data science offerings offer a comprehensive, scalable analytical environment that is quick and easy to use, allowing you to meet diverse business requirements. Automatically generated insights allow you to identify the most commonly used variables across all models, the most significant variables selected across models, and assess results for all models. Natural language generation capabilities allow you to create project summaries in plain language. This makes it easy to interpret reports. Analytics team members can add project notes and comments to the insights report to facilitate communication between team members. SAS allows you to embed open source code into an analysis and call open-source algorithms seamlessly within its environment. This allows for collaboration within your organization as users can program in the language they prefer. SAS Deep Learning with Python (DLPy) is also available on GitHub.