Best Pythia Alternatives in 2025
Find the top alternatives to Pythia currently available. Compare ratings, reviews, pricing, and features of Pythia alternatives in 2025. Slashdot lists the best Pythia alternatives on the market that offer competing products that are similar to Pythia. Sort through Pythia alternatives below to make the best choice for your needs
-
1
Chinchilla
Google DeepMind
Chinchilla has a large language. Chinchilla has the same compute budget of Gopher, but 70B more parameters and 4x as much data. Chinchilla consistently and significantly outperforms Gopher 280B, GPT-3 175B, Jurassic-1 178B, and Megatron-Turing (530B) in a wide range of downstream evaluation tasks. Chinchilla also uses less compute to perform fine-tuning, inference and other tasks. This makes it easier for downstream users to use. Chinchilla reaches a high-level average accuracy of 67.5% for the MMLU benchmark. This is a greater than 7% improvement compared to Gopher. -
2
T5
Google
With T5, we propose re-framing all NLP into a unified format where the input and the output are always text strings. This is in contrast to BERT models which can only output a class label, or a span from the input. Our text-totext framework allows us use the same model and loss function on any NLP task. This includes machine translation, document summary, question answering and classification tasks. We can also apply T5 to regression by training it to predict a string representation of a numeric value instead of the actual number. -
3
OPT
Meta
The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model. -
4
MPT-7B
MosaicML
FreeIntroducing MPT-7B - the latest addition to our MosaicML Foundation Series. MPT-7B, a transformer that is trained from scratch using 1T tokens of code and text, is the latest entry in our MosaicML Foundation Series. It is open-source, available for commercial purposes, and has the same quality as LLaMA-7B. MPT-7B trained on the MosaicML Platform in 9.5 days, with zero human interaction at a cost $200k. You can now train, fine-tune and deploy your private MPT models. You can either start from one of our checkpoints, or you can start from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens! -
5
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. These models are now used by many users, and some even for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. It is vital that the academic community engages in order to make maximum progress towards addressing these pressing issues. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI's text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta's LLaMA 7B model. -
6
Falcon-40B
Technology Innovation Institute (TII)
FreeFalcon-40B is a 40B parameter causal decoder model, built by TII. It was trained on 1,000B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-40B Falcon-40B is the best open source model available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. This is a raw model that should be finetuned to fit most uses. If you're looking for a model that can take generic instructions in chat format, we suggest Falcon-40B Instruct. -
7
LUIS
Microsoft
Language Understanding (LUIS), a machine learning-based service that builds natural language into apps and bots. Rapidly create custom models that are enterprise-ready and can be continuously improved. Natural language can be added to your apps. LUIS is a language model that interprets conversations to find valuable information. It extracts information from sentences (entities) and interprets user intentions (goals). LUIS is seamlessly integrated with the Azure Bot Service, making creating sophisticated bots easy. You can quickly create and deploy a solution faster by combining powerful developer tools with pre-built apps and entity dictionary, such as Music, Calendar, and Devices. The collective knowledge of the internet is used to create dictionaries. This allows your model to identify valuable information from user conversations. Active learning is used for continuous improvement of the quality of the models. -
8
RedPajama
RedPajama
FreeGPT-4 and other foundation models have accelerated AI's development. The most powerful models, however, are closed commercial models or partially open. RedPajama aims to create a set leading, open-source models. Today, we're excited to announce that the first phase of this project is complete: the reproduction of LLaMA's training dataset of more than 1.2 trillion tokens. The most capable foundations models are currently closed behind commercial APIs. This limits research, customization and their use with sensitive information. If the open community can bridge the quality gap between closed and open models, fully open-source models could be the answer to these limitations. Recent progress has been made in this area. AI is in many ways having its Linux moment. Stable Diffusion demonstrated that open-source software can not only compete with commercial offerings such as DALL-E, but also lead to incredible creative results from community participation. -
9
GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
-
10
Phi-2
Microsoft
Phi-2 is a 2.7-billion-parameter language-model that shows outstanding reasoning and language-understanding capabilities. It represents the state-of-the art performance among language-base models with less than thirteen billion parameters. Phi-2 can match or even outperform models 25x larger on complex benchmarks, thanks to innovations in model scaling. Phi-2's compact size makes it an ideal playground for researchers. It can be used for exploring mechanistic interpretationability, safety improvements or fine-tuning experiments on a variety tasks. We have included Phi-2 in the Azure AI Studio catalog to encourage research and development of language models. -
11
Grok-3, created by xAI, marks a major leap forward in artificial intelligence, aiming to redefine standards in the field. As a multimodal AI, it is engineered to process and interpret diverse data types, including text, images, and audio, enabling seamless and comprehensive user interactions. Grok-3 was trained at an unparalleled scale, utilizing 100,000 Nvidia H100 GPUs on the Colossus supercomputer—ten times the computational resources of its predecessor. This massive processing capability positions Grok-3 to excel in tasks such as advanced reasoning, coding, and real-time analysis of current events via direct integration with X posts. With these advancements, Grok-3 is poised to surpass previous iterations and compete at the forefront of generative AI innovation.
-
12
Yi-Large
01.AI
$0.19 per 1M input tokenYi-Large, a proprietary large language engine developed by 01.AI with a 32k context size and input and output costs of $2 per million tokens. It is distinguished by its advanced capabilities in common-sense reasoning and multilingual support. It performs on par with leading models such as GPT-4 and Claude3 when it comes to various benchmarks. Yi-Large was designed to perform tasks that require complex inference, language understanding, and prediction. It is suitable for applications such as knowledge search, data classifying, and creating chatbots. Its architecture is built on a decoder only transformer with enhancements like pre-normalization, Group Query attention, and has been trained using a large, high-quality, multilingual dataset. The model's versatility, cost-efficiency and global deployment potential make it a strong competitor in the AI market. -
13
ALBERT
Google
ALBERT is a Transformer model that can be self-supervised and was trained on large amounts of English data. It does not need manual labelling and instead uses an automated process that generates inputs and labels from the raw text. It is trained with two distinct goals in mind. Masked Language Modeling is the first. This randomly masks 15% words in an input sentence and requires that the model predict them. This technique is different from autoregressive models such as GPT and RNNs in that it allows the model learn bidirectional sentence representations. Sentence Ordering Prediction is the second objective. This involves predicting the order of two consecutive text segments during pretraining. -
14
GPT-NeoX
EleutherAI
FreeA model parallel autoregressive transformator implementation on GPUs based on the DeepSpeed Library. This repository contains EleutherAI’s library for training large language models on GPUs. Our current framework is based upon NVIDIA's Megatron Language Model, and has been enhanced with techniques from DeepSpeed, as well as some novel improvements. This repo is intended to be a central and accessible place for techniques to train large-scale autoregressive models and to accelerate research into large scale training. -
15
Claude Pro is a large language model that can handle complex tasks with a friendly and accessible demeanor. It is trained on high-quality, extensive data and excels at understanding contexts, interpreting subtleties, and producing well structured, coherent responses to a variety of topics. Claude Pro is able to create detailed reports, write creative content, summarize long documents, and assist with coding tasks by leveraging its robust reasoning capabilities and refined knowledge base. Its adaptive algorithms constantly improve its ability learn from feedback. This ensures that its output is accurate, reliable and helpful. Whether Claude Pro is serving professionals looking for expert support or individuals seeking quick, informative answers - it delivers a versatile, productive conversational experience.
-
16
Medical LLM
John Snow Labs
John Snow Labs Medical LLM is a domain-specific large langauge model (LLM) that revolutionizes the way healthcare organizations harness artificial intelligence. This innovative platform was designed specifically for the healthcare sector, combining cutting edge natural language processing capabilities with a profound understanding of medical terminology and clinical workflows. The result is an innovative tool that allows healthcare providers, researchers and administrators to unlock new insight, improve patient outcomes and drive operational efficiency. The Healthcare LLM's comprehensive training is at the core of its functionality. This includes a vast amount of healthcare data such as clinical notes, research papers and regulatory documents. This specialized training allows for the model to accurately generate and interpret medical text. It is an invaluable tool for tasks such clinical documentation, automated coding and medical research. -
17
Hunyuan T1
Tencent
Tencent Yuanbao, an AI assistant, is a product developed by Tencent. It integrates AI search, reading and creation, as well as various unique features, to provide users with convenient, personalized and efficient intelligent services. Yuanbao is based on Tencent's Hunyuan language model and excels at Chinese language understanding, logical reason, and task execution. It provides AI-based search and writing capabilities. Users can analyze documents and engage with prompt-based interaction. Image recognition is supported, allowing users send images to be analyzed and interpreted. Yuanbao can be used on desktop, mobile, and web platforms. It's designed to improve work and study efficiency. The desktop version includes the same core functionality as the mobile and web versions, but also adds new features such as word search, translation and screenshot-based queries. -
18
Gemini 2.0
Google
Free 1 RatingGemini 2.0, an advanced AI model developed by Google is designed to offer groundbreaking capabilities for natural language understanding, reasoning and multimodal interaction. Gemini 2.0 builds on the success of Gemini's predecessor by integrating large language processing and enhanced problem-solving, decision-making, and interpretation abilities. This allows it to interpret and produce human-like responses more accurately and nuanced. Gemini 2.0, unlike traditional AI models, is trained to handle a variety of data types at once, including text, code, images, etc. This makes it a versatile tool that can be used in research, education, business and creative industries. Its core improvements are better contextual understanding, reduced biased, and a more effective architecture that ensures quicker, more reliable results. Gemini 2.0 is positioned to be a major step in the evolution AI, pushing the limits of human-computer interactions. -
19
CodeQwen
Alibaba
FreeCodeQwen, developed by the Qwen Team, Alibaba Cloud, is the code version. It is a transformer based decoder only language model that has been pre-trained with a large number of codes. A series of benchmarks shows that the code generation is strong and that it performs well. Supporting long context generation and understanding with a context length of 64K tokens. CodeQwen is a 92-language coding language that provides excellent performance for text-to SQL, bug fixes, and more. CodeQwen chat is as simple as writing a few lines of code using transformers. We build the tokenizer and model using pre-trained methods and use the generate method for chatting. The chat template is provided by the tokenizer. Following our previous practice, we apply the ChatML Template for chat models. The model will complete the code snippets in accordance with the prompts without any additional formatting. -
20
OpenELM
Apple
OpenELM is a family of open-source language models developed by Apple. It uses a layering strategy to allocate parameters efficiently within each layer of a transformer model. This leads to improved accuracy compared to other open language models. OpenELM was trained using publicly available datasets, and it achieves the best performance for its size. -
21
Qwen-7B
Alibaba
FreeQwen-7B, also known as Qwen-7B, is the 7B-parameter variant of the large language models series Qwen. Tongyi Qianwen, proposed by Alibaba Cloud. Qwen-7B, a Transformer-based language model, is pretrained using a large volume data, such as web texts, books, code, etc. Qwen-7B is also used to train Qwen-7B Chat, an AI assistant that uses large models and alignment techniques. The Qwen-7B features include: Pre-trained with high quality data. We have pretrained Qwen-7B using a large-scale, high-quality dataset that we constructed ourselves. The dataset contains over 2.2 trillion tokens. The dataset contains plain texts and codes and covers a wide range domains including general domain data as well as professional domain data. Strong performance. We outperform our competitors in a series benchmark datasets that evaluate natural language understanding, mathematics and coding. And more. -
22
Llama 3.3
Meta
FreeLlama 3.3, the latest in the Llama language model series, was developed to push the limits of AI-powered communication and understanding. Llama 3.3, with its enhanced contextual reasoning, improved generation of language, and advanced fine tuning capabilities, is designed to deliver highly accurate responses across diverse applications. This version has a larger dataset for training, refined algorithms to improve nuanced understanding, and reduced biases as compared to previous versions. Llama 3.3 excels at tasks such as multilingual communication, technical explanations, creative writing and natural language understanding. It is an indispensable tool for researchers, developers and businesses. Its modular architecture enables customization in specialized domains and ensures performance at scale. -
23
BLOOM
BigScience
BLOOM (autoregressive large language model) is trained to continue text using a prompt on large amounts of text data. It uses industrial-scale computational resources. It can produce coherent text in 46 languages and 13 programming language, which is almost impossible to distinguish from text written by humans. BLOOM can be trained to perform text tasks that it hasn’t been explicitly trained for by casting them as text generation jobs. -
24
LLaVA
LLaVA
FreeLLaVA is a multimodal model that combines a Vicuna language model with a vision encoder to facilitate comprehensive visual-language understanding. LLaVA's chat capabilities are impressive, emulating multimodal functionality of models such as GPT-4. LLaVA 1.5 has achieved the best performance in 11 benchmarks using publicly available data. It completed training on a single 8A100 node in about one day, beating methods that rely upon billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been crucial in training LLaVA for a wide range of visual and linguistic tasks. -
25
Qwen2.5
Alibaba
FreeQwen2.5, an advanced multimodal AI system, is designed to provide highly accurate responses that are context-aware across a variety of applications. It builds on its predecessors' capabilities, integrating cutting edge natural language understanding, enhanced reasoning, creativity and multimodal processing. Qwen2.5 is able to analyze and generate text as well as interpret images and interact with complex data in real-time. It is highly adaptable and excels at personalized assistance, data analytics, creative content creation, and academic research. This makes it a versatile tool that can be used by professionals and everyday users. Its user-centric approach emphasizes transparency, efficiency and alignment with ethical AI. -
26
Mercury Coder
Inception Labs
FreeInception Labs has introduced Mercury, a game-changing diffusion-based large language model (dLLM) that sets new standards in speed, efficiency, and accuracy. Unlike traditional LLMs, Mercury generates text in a coarse-to-fine manner, allowing for real-time corrections and more structured outputs. This breakthrough model delivers over 1000 tokens per second, surpassing existing LLMs in both speed and computational cost efficiency. The Mercury Coder variant is optimized for code generation, achieving top-tier performance on industry benchmarks while being 5-10x faster than conventional coding AI models like GPT-4o Mini and Claude 3.5 Haiku. Mercury is now available via API and enterprise deployments, redefining AI-powered workflows. -
27
ERNIE 3.0 Titan
Baidu
Pre-trained models of language have achieved state-of the-art results for various Natural Language Processing (NLP). GPT-3 has demonstrated that scaling up language models pre-trained can further exploit their immense potential. Recently, a framework named ERNIE 3.0 for pre-training large knowledge enhanced models was proposed. This framework trained a model that had 10 billion parameters. ERNIE 3.0 performed better than the current state-of-the art models on a variety of NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. We also design a self supervised adversarial and a controllable model language loss to make ERNIE Titan generate credible texts. -
28
DeepSeek Coder
DeepSeek
Free 1 RatingDeepSeek Coder, a cutting edge software tool, is designed to revolutionize data analysis and coding. It allows users to seamlessly integrate data analysis, visualization, and querying into their workflow by leveraging advanced machine-learning algorithms and natural language processing. DeepSeek Coder's intuitive interface allows both novice and experienced coders to efficiently write, optimize, and test code. Its powerful set of features include real-time code completion, intelligent syntax checking, and comprehensive debugging, all designed to streamline coding. DeepSeek Coder can also understand and interpret complex data, allowing users to create sophisticated data-driven apps with ease. -
29
Galactica
Meta
Information overload is a major barrier to scientific progress. The explosion of scientific literature and data makes it harder to find useful insights among a vast amount of information. Search engines are used to access scientific knowledge today, but they cannot organize it. Galactica is an extensive language model which can store, combine, and reason about scientific information. We train using a large corpus of scientific papers, reference material and knowledge bases, among other sources. We outperform other models in a variety of scientific tasks. Galactica performs better than the latest GPT-3 on technical knowledge probes like LaTeX Equations by 68.2% to 49.0%. Galactica is also good at reasoning. It outperforms Chinchilla in mathematical MMLU with a score between 41.3% and 35.7%. And PaLM 540B in MATH, with a score between 20.4% and 8.8%. -
30
OLMo 2
Ai2
OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities. -
31
Grok 3 Think
xAI
Free 1 RatingGrok 3 Think represents a major leap forward in AI development, focusing on advanced reasoning capabilities that allow the model to tackle complex problems over extended periods. Through reinforcement learning, it can iteratively refine its solutions by reconsidering past steps, exploring new possibilities, and improving its approach. Trained on a massive scale, Grok 3 Think excels in areas like math, coding, and general knowledge, achieving remarkable results in high-level competitions like the American Invitational Mathematics Examination. It also stands out for its transparency, enabling users to examine the thought process behind its answers, setting a new standard for AI problem-solving and insight. -
32
PanGu-Σ
Huawei
The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks. -
33
Doubao, an intelligent language model created by ByteDance, is a powerful tool for learning new languages. It has provided users with useful answers and insights on a wide range topics. Doubao is able to handle complex questions and provide detailed explanations. It can also engage in meaningful conversation. Its advanced language understanding and generation abilities continue to help people solve problems, explore new ideas, and seek knowledge. Doubao can be used for academic inquiries, inspiration for creative projects, or just a simple conversation.
-
34
NVIDIA NeMo Megatron
NVIDIA
NVIDIA NeMo megatron is an end to-end framework that can be used to train and deploy LLMs with billions or trillions of parameters. NVIDIA NeMo Megatron is part of the NVIDIAAI platform and offers an efficient, cost-effective, and cost-effective containerized approach to building and deploying LLMs. It is designed for enterprise application development and builds upon the most advanced technologies of NVIDIA research. It provides an end-to–end workflow for automated distributed processing, training large-scale customized GPT-3 and T5 models, and deploying models to infer at scale. The validation of converged recipes that allow for training and inference is a key to unlocking the power and potential of LLMs. The hyperparameter tool makes it easy to customize models. It automatically searches for optimal hyperparameter configurations, performance, and training/inference for any given distributed GPU cluster configuration. -
35
ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
-
36
Defense Llama
Scale AI
Scale AI is pleased to announce Defense Llama. This Large Language Model (LLM), built on Meta's Llama 3, is customized and fine-tuned for support of American national security missions. Defense Llama is available only in controlled U.S. Government environments within Scale Donovan. It empowers our servicemen and national security professionals by enabling them to apply the power generative AI for their unique use cases such as planning military operations or intelligence operations, and understanding adversary weaknesses. Defense Llama has been trained using a vast dataset that includes military doctrine, international human rights law, and relevant policy designed to align with Department of Defense (DoD), guidelines for armed conflicts, as well as DoD's Ethical Principles of Artificial Intelligence. This allows the model to respond with accurate, meaningful and relevant responses. Scale is proud that it can help U.S. national-security personnel use generative AI for defense in a safe and secure manner. -
37
ChatGPT Enterprise
OpenAI
$60/user/ month ChatGPT Enterprise is the most powerful version yet, with enterprise-grade security and privacy. 1. Training models do not use customer prompts or data 2. Data encryption in transit and at rest (TLS 1.2+). 3. SOC 2 compliant 4. Easy bulk member management and dedicated admin console 5. SSO and Domain Verification 6. Use the analytics dashboard to understand usage 7. Access to GPT-4 Advanced Data Analysis and GPT-4 at high speed is unlimited 8. 32k token context window for 4X longer inputs, memory and inputs 9. Shareable chat templates to help your company collaborate -
38
DeepSeek-V3
DeepSeek
Free 1 RatingDeepSeek-V3 is an advanced AI model built to excel in natural language comprehension, sophisticated reasoning, and decision-making across a wide range of applications. Harnessing innovative neural architectures and vast datasets, it offers exceptional capabilities for addressing complex challenges in fields like research, development, business analytics, and automation. Designed for both scalability and efficiency, DeepSeek-V3 empowers developers and organizations to drive innovation and unlock new possibilities with state-of-the-art AI solutions. -
39
Falcon Mamba 7B
Technology Innovation Institute (TII)
FreeFalcon Mamba 7B is the first open-source State Space Language Model (SSLM), introducing a revolutionary advancement in Falcon's architecture. Independently ranked as the top-performing open-source SSLM by Hugging Face, it redefines efficiency in AI language models. With low memory requirements and the ability to generate long text sequences without additional computational costs, Falcon Mamba 7B outperforms traditional transformer models like Meta’s Llama 3.1 8B and Mistral’s 7B. This cutting-edge model highlights Abu Dhabi’s leadership in AI research and innovation, pushing the boundaries of what’s possible in open-source machine learning. -
40
Hunyuan Turbo S
Tencent
Hunyuan Turbo S by Tencent is an advanced AI model that integrates high-speed, real-time responses with deep analytical thinking. By improving the speed of text generation and minimizing delays, it provides faster and more intuitive answers, particularly in knowledge, math, and creative content. With its Hybrid-Mamba-Transformer architecture, Turbo S reduces computation costs, making it more efficient and scalable than traditional models. This hybrid approach offers the best of both fast thinking and slow, reasoned analysis, empowering businesses to deploy AI applications across a wide range of use cases, from simple queries to complex problem-solving. -
41
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096. -
42
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge instruction-following language model created by the Allen Institute for AI (AI2), designed to enhance reasoning, coding, mathematics, knowledge retrieval, and safety. Built on the Llama 3 Base model, Tülu 3 undergoes a four-stage post-training process that includes curated prompt synthesis, supervised fine-tuning, preference tuning with diverse datasets, and reinforcement learning to improve targeted skills with verifiable results. As an open-source model, it prioritizes transparency by providing access to training data, evaluation tools, and code, bridging the gap between open and proprietary AI fine-tuning techniques. Performance evaluations demonstrate that Tülu 3 surpasses other similarly sized open-weight models, including Llama 3.1-Instruct and Qwen2.5-Instruct, across multiple benchmarks. -
43
GPT-5
OpenAI
$0.0200 per 1000 tokensGPT-5 is OpenAI's Generative Pretrained Transformer. It is a large-language model (LLM), which is still in development. LLMs have been trained to work with massive amounts of text and can generate realistic and coherent texts, translate languages, create different types of creative content and answer your question in a way that is informative. It's still not available to the public. OpenAI has not announced a release schedule, but some believe it could launch in 2024. It's expected that GPT-5 will be even more powerful. GPT-4 has already proven to be impressive. It is capable of writing creative content, translating languages and generating text of human-quality. GPT-5 will be expected to improve these abilities, with improved reasoning, factual accuracy and ability to follow directions. -
44
Flip AI
Flip AI
Our large language model can understand and reason with any observability data including unstructured data so you can quickly restore software and systems back to health. Our LLM is trained to understand and mitigate critical incidents across all types of architectures. This gives enterprise developers access to one of the world's top debugging experts. Our LLM was created to solve the most difficult part of the software development process - debugging incidents in production. Our model does not require any training and can be used with any observability data systems. It can learn from feedback and fine-tune based upon past incidents and patterns within your environment, while keeping your data within your boundaries. Flip can resolve critical incidents in seconds. -
45
EXAONE
LG
EXAONE, a large-scale language model developed by LG AI Research, aims to nurture "Expert AI" across multiple domains. The Expert AI alliance was formed by leading companies from various fields in order to advance EXAONE's capabilities. Partner companies in the alliance will act as mentors and provide EXAONE with skills, knowledge, data, and other resources to help it gain expertise in relevant fields. EXAONE is akin to an advanced college student who has taken elective courses in general. It requires intensive training to become a specialist in a specific area. LG AI Research has already demonstrated EXAONE’s abilities in real-world applications such as Tilda AI human artist, which debuted at New York Fashion Week. AI applications have also been developed to summarize customer service conversations, and extract information from complex academic documents. -
46
PanGu-α
Huawei
PanGu-a was developed under MindSpore, and trained on 2048 Ascend AI processors. The MindSpore Auto-parallel parallelism strategy was implemented to scale the training task efficiently to 2048 processors. This includes data parallelism as well as op-level parallelism. We pretrain PanGu-a with 1.1TB of high-quality Chinese data collected from a variety of domains in order to enhance its generalization ability. We test the generation abilities of PanGua in different scenarios, including text summarizations, question answering, dialog generation, etc. We also investigate the effects of model scaling on the few shot performances across a wide range of Chinese NLP task. The experimental results show that PanGu-a is superior in performing different tasks with zero-shot or few-shot settings. -
47
Qwen
Alibaba
FreeQwen LLM is a family of large-language models (LLMs), developed by Damo Academy, an Alibaba Cloud subsidiary. These models are trained using a large dataset of text and codes, allowing them the ability to understand and generate text that is human-like, translate languages, create different types of creative content and answer your question in an informative manner. Here are some of the key features of Qwen LLMs. Variety of sizes: Qwen's series includes sizes ranging from 1.8 billion parameters to 72 billion, offering options that meet different needs and performance levels. Open source: Certain versions of Qwen have open-source code, which is available to anyone for use and modification. Qwen is multilingual and can translate multiple languages including English, Chinese and Japanese. Qwen models are capable of a wide range of tasks, including text summarization and code generation, as well as generation and translation. -
48
Gemini 1.5 Pro
Google
1 RatingThe Gemini 1.5 Pro AI Model is a state of the art language model that delivers highly accurate, context aware, and human like responses across a wide range of applications. It excels at natural language understanding, generation and reasoning tasks. The model has been fine-tuned to support tasks such as content creation, code-generation, data analysis, or complex problem-solving. Its advanced algorithms allow it to adapt seamlessly to different domains, conversational styles and languages. The Gemini 1.5 Pro, with its focus on scalability, is designed for both small-scale and enterprise-level implementations. It is a powerful tool to enhance productivity and innovation. -
49
GPT-4.5 marks a significant leap in AI model development, offering more accurate and nuanced text generation through an advanced combination of unsupervised learning and scalable training methods. This model is fine-tuned to interpret human cues with greater emotional intelligence (EQ) and creativity, excelling in tasks like writing assistance, content creation, and complex problem-solving. GPT-4.5 offers improved steerability and an ability to collaborate more naturally with humans, making it ideal for use in educational, business, and creative applications. The latest version is designed to reduce hallucinations and enhance overall reliability, while excelling in practical applications across various industries.
-
50
Claude 3.7 Sonnet
Anthropic
Free 1 RatingClaude 3.7 Sonnet from Anthropic is an advanced AI model that offers a unique blend of fast responses and in-depth reflective reasoning. This hybrid approach allows users to toggle between speed and thoughtfulness, enabling the model to engage in complex problem-solving with precision. With its self-reflection mechanism, Claude 3.7 Sonnet is well-suited for tasks requiring deeper understanding and critical thinking, making it particularly valuable in fields like coding, research, and analysis. As an adaptable and powerful AI tool, it provides robust support for businesses and professionals needing sophisticated reasoning and reliable insights.