Best Pipeshift Alternatives in 2025

Find the top alternatives to Pipeshift currently available. Compare ratings, reviews, pricing, and features of Pipeshift alternatives in 2025. Slashdot lists the best Pipeshift alternatives on the market that offer competing products that are similar to Pipeshift. Sort through Pipeshift alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 2
    Google Compute Engine Reviews
    See Software
    Learn More
    Compare Both
    Compute Engine (IaaS), a platform from Google that allows organizations to create and manage cloud-based virtual machines, is an infrastructure as a services (IaaS). Computing infrastructure in predefined sizes or custom machine shapes to accelerate cloud transformation. General purpose machines (E2, N1,N2,N2D) offer a good compromise between price and performance. Compute optimized machines (C2) offer high-end performance vCPUs for compute-intensive workloads. Memory optimized (M2) systems offer the highest amount of memory and are ideal for in-memory database applications. Accelerator optimized machines (A2) are based on A100 GPUs, and are designed for high-demanding applications. Integrate Compute services with other Google Cloud Services, such as AI/ML or data analytics. Reservations can help you ensure that your applications will have the capacity needed as they scale. You can save money by running Compute using the sustained-use discount, and you can even save more when you use the committed-use discount.
  • 3
    RunPod Reviews
    See Software
    Learn More
    Compare Both
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 4
    Amazon SageMaker Reviews
    Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment.
  • 5
    CoreWeave Reviews
    CoreWeave stands out as a cloud infrastructure service that focuses on GPU-centric computing solutions specifically designed for artificial intelligence applications. Their platform delivers scalable, high-performance GPU clusters that enhance both training and inference processes for AI models, catering to sectors such as machine learning, visual effects, and high-performance computing. In addition to robust GPU capabilities, CoreWeave offers adaptable storage, networking, and managed services that empower AI-focused enterprises, emphasizing reliability, cost-effectiveness, and top-tier security measures. This versatile platform is widely adopted by AI research facilities, labs, and commercial entities aiming to expedite their advancements in artificial intelligence technology. By providing an infrastructure that meets the specific demands of AI workloads, CoreWeave plays a crucial role in driving innovation across various industries.
  • 6
    Red Hat OpenShift Reviews
    Kubernetes serves as a powerful foundation for transformative ideas. It enables developers to innovate and deliver projects more rapidly through the premier hybrid cloud and enterprise container solution. Red Hat OpenShift simplifies the process with automated installations, updates, and comprehensive lifecycle management across the entire container ecosystem, encompassing the operating system, Kubernetes, cluster services, and applications on any cloud platform. This service allows teams to operate with speed, flexibility, assurance, and a variety of options. You can code in production mode wherever you prefer to create, enabling a return to meaningful work. Emphasizing security at all stages of the container framework and application lifecycle, Red Hat OpenShift provides robust, long-term enterprise support from a leading contributor to Kubernetes and open-source technology. It is capable of handling the most demanding workloads, including AI/ML, Java, data analytics, databases, and more. Furthermore, it streamlines deployment and lifecycle management through a wide array of technology partners, ensuring that your operational needs are met seamlessly. This integration of capabilities fosters an environment where innovation can thrive without compromise.
  • 7
    Mistral AI Reviews
    Mistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry.
  • 8
    NVIDIA Run:ai Reviews
    NVIDIA Run:ai is a cutting-edge platform that streamlines AI workload orchestration and GPU resource management to accelerate AI development and deployment at scale. It dynamically pools GPU resources across hybrid clouds, private data centers, and public clouds to optimize compute efficiency and workload capacity. The solution offers unified AI infrastructure management with centralized control and policy-driven governance, enabling enterprises to maximize GPU utilization while reducing operational costs. Designed with an API-first architecture, Run:ai integrates seamlessly with popular AI frameworks and tools, providing flexible deployment options from on-premises to multi-cloud environments. Its open-source KAI Scheduler offers developers simple and flexible Kubernetes scheduling capabilities. Customers benefit from accelerated AI training and inference with reduced bottlenecks, leading to faster innovation cycles. Run:ai is trusted by organizations seeking to scale AI initiatives efficiently while maintaining full visibility and control. This platform empowers teams to transform resource management into a strategic advantage with zero manual effort.
  • 9
    Kubernetes Reviews
    Kubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments.
  • 10
    Instill Core Reviews

    Instill Core

    Instill AI

    $19/month/user
    Instill Core serves as a comprehensive AI infrastructure solution that effectively handles data, model, and pipeline orchestration, making the development of AI-centric applications more efficient. Users can easily access it through Instill Cloud or opt for self-hosting via the instill-core repository on GitHub. The features of Instill Core comprise: Instill VDP: A highly adaptable Versatile Data Pipeline (VDP) that addresses the complexities of ETL for unstructured data, enabling effective pipeline orchestration. Instill Model: An MLOps/LLMOps platform that guarantees smooth model serving, fine-tuning, and continuous monitoring to achieve peak performance with unstructured data ETL. Instill Artifact: A tool that streamlines data orchestration for a cohesive representation of unstructured data. With its ability to simplify the construction and oversight of intricate AI workflows, Instill Core proves to be essential for developers and data scientists who are harnessing the power of AI technologies. Consequently, it empowers users to innovate and implement AI solutions more effectively.
  • 11
    Intel Tiber AI Cloud Reviews
    The Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies.
  • 12
    Replicate Reviews
    Replicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts.
  • 13
    Klu Reviews
    Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools.
  • 14
    Sync Reviews
    Sync Computing's Gradient is an advanced AI-driven optimization engine designed to streamline and enhance cloud-based data infrastructure. Utilizing cutting-edge machine learning technology developed at MIT, Gradient enables organizations to optimize the performance of their cloud workloads on CPUs and GPUs while significantly reducing costs. The platform offers up to 50% savings on Databricks compute expenses, ensuring workloads consistently meet runtime service level agreements (SLAs). With continuous monitoring and dynamic adjustments, Gradient adapts to changing data sizes and workload patterns, delivering peak efficiency across complex pipelines. Seamlessly integrating with existing tools and supporting various cloud providers, Sync Computing provides a robust solution for optimizing modern data infrastructure.
  • 15
    FluidStack Reviews

    FluidStack

    FluidStack

    $1.49 per month
    Achieve prices that are 3-5 times more competitive than conventional cloud services. FluidStack combines underutilized GPUs from data centers globally to provide unmatched economic advantages in the industry. With just one platform and API, you can deploy over 50,000 high-performance servers in mere seconds. Gain access to extensive A100 and H100 clusters equipped with InfiniBand in just a few days. Utilize FluidStack to train, fine-tune, and launch large language models on thousands of cost-effective GPUs in a matter of minutes. By connecting multiple data centers, FluidStack effectively disrupts monopolistic GPU pricing in the cloud. Experience computing speeds that are five times faster while enhancing cloud efficiency. Instantly tap into more than 47,000 idle servers, all with tier 4 uptime and security, through a user-friendly interface. You can train larger models, set up Kubernetes clusters, render tasks more quickly, and stream content without delays. The setup process requires only one click, allowing for custom image and API deployment in seconds. Additionally, our engineers are available around the clock through Slack, email, or phone, acting as a seamless extension of your team to ensure you receive the support you need. This level of accessibility and assistance can significantly streamline your operations.
  • 16
    Foundry Reviews
    Foundry represents a revolutionary type of public cloud, driven by an orchestration platform that simplifies access to AI computing akin to the ease of flipping a switch. Dive into the impactful features of our GPU cloud services that are engineered for optimal performance and unwavering reliability. Whether you are overseeing training processes, catering to client needs, or adhering to research timelines, our platform addresses diverse demands. Leading companies have dedicated years to developing infrastructure teams that create advanced cluster management and workload orchestration solutions to minimize the complexities of hardware management. Foundry democratizes this technology, allowing all users to take advantage of computational power without requiring a large-scale team. In the present GPU landscape, resources are often allocated on a first-come, first-served basis, and pricing can be inconsistent across different vendors, creating challenges during peak demand periods. However, Foundry utilizes a sophisticated mechanism design that guarantees superior price performance compared to any competitor in the market. Ultimately, our goal is to ensure that every user can harness the full potential of AI computing without the usual constraints associated with traditional setups.
  • 17
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 18
    NVIDIA Base Command Manager Reviews
    NVIDIA Base Command Manager provides rapid deployment and comprehensive management for diverse AI and high-performance computing clusters, whether at the edge, within data centers, or across multi- and hybrid-cloud settings. This platform automates the setup and management of clusters, accommodating sizes from a few nodes to potentially hundreds of thousands, and is compatible with NVIDIA GPU-accelerated systems as well as other architectures. It facilitates orchestration through Kubernetes, enhancing the efficiency of workload management and resource distribution. With additional tools for monitoring infrastructure and managing workloads, Base Command Manager is tailored for environments that require accelerated computing, making it ideal for a variety of HPC and AI applications. Available alongside NVIDIA DGX systems and within the NVIDIA AI Enterprise software suite, this solution enables the swift construction and administration of high-performance Linux clusters, thereby supporting a range of applications including machine learning and analytics. Through its robust features, Base Command Manager stands out as a key asset for organizations aiming to optimize their computational resources effectively.
  • 19
    Google Cloud AI Infrastructure Reviews
    Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
  • 20
    Azure OpenAI Service Reviews

    Azure OpenAI Service

    Microsoft

    $0.0004 per 1000 tokens
    Utilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively.
  • 21
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    Be it prompt engineering, fine-tuning, or extensive training, we are fully equipped to fulfill your business needs. Seamlessly incorporate your newly developed model into your application with the Together Inference API, which offers unparalleled speed and flexible scaling capabilities. Together AI is designed to adapt to your evolving requirements as your business expands. You can explore the training processes of various models and the datasets used to enhance their accuracy while reducing potential risks. It's important to note that the ownership of the fine-tuned model lies with you, not your cloud service provider, allowing for easy transitions if you decide to switch providers for any reason, such as cost adjustments. Furthermore, you can ensure complete data privacy by opting to store your data either locally or within our secure cloud environment. The flexibility and control we offer empower you to make decisions that best suit your business.
  • 22
    SambaNova Reviews
    SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. At the heart of SambaNova innovation is the fourth generation SN40L Reconfigurable Dataflow Unit (RDU). Purpose built for AI workloads, the SN40L RDU takes advantage of a dataflow architecture and a three-tiered memory design. The dataflow architecture eliminates the challenges that GPUs have with high performance inference. The three tiers of memory enable the platform to run hundreds of models on a single node and to switch between them in microseconds. We give our customers the optionality to experience through the cloud or on-premise.
  • 23
    Cake AI Reviews
    Cake AI serves as a robust infrastructure platform designed for teams to effortlessly create and launch AI applications by utilizing a multitude of pre-integrated open source components, ensuring full transparency and governance. It offers a carefully curated, all-encompassing suite of top-tier commercial and open source AI tools that come with ready-made integrations, facilitating the transition of AI applications into production seamlessly. The platform boasts features such as dynamic autoscaling capabilities, extensive security protocols including role-based access and encryption, as well as advanced monitoring tools and adaptable infrastructure that can operate across various settings, from Kubernetes clusters to cloud platforms like AWS. Additionally, its data layer is equipped with essential tools for data ingestion, transformation, and analytics, incorporating technologies such as Airflow, DBT, Prefect, Metabase, and Superset to enhance data management. For effective AI operations, Cake seamlessly connects with model catalogs like Hugging Face and supports versatile workflows through tools such as LangChain and LlamaIndex, allowing teams to customize their processes efficiently. This comprehensive ecosystem empowers organizations to innovate and deploy AI solutions with greater agility and precision.
  • 24
    Crusoe Reviews
    Crusoe delivers a cloud infrastructure tailored for artificial intelligence tasks, equipped with cutting-edge GPU capabilities and top-tier data centers. This platform is engineered for AI-centric computing, showcasing high-density racks alongside innovative direct liquid-to-chip cooling to enhance overall performance. Crusoe’s infrastructure guarantees dependable and scalable AI solutions through features like automated node swapping and comprehensive monitoring, complemented by a dedicated customer success team that assists enterprises in rolling out production-level AI workloads. Furthermore, Crusoe emphasizes environmental sustainability by utilizing clean, renewable energy sources, which enables them to offer economical services at competitive pricing. With a commitment to excellence, Crusoe continuously evolves its offerings to meet the dynamic needs of the AI landscape.
  • 25
    SwarmOne Reviews
    SwarmOne is an innovative platform that autonomously manages infrastructure to enhance the entire lifecycle of AI, from initial training to final deployment, by optimizing and automating AI workloads across diverse environments. Users can kickstart instant AI training, evaluation, and deployment with merely two lines of code and a straightforward one-click hardware setup. It accommodates both traditional coding and no-code approaches, offering effortless integration with any framework, integrated development environment, or operating system, while also being compatible with any brand, number, or generation of GPUs. The self-configuring architecture of SwarmOne takes charge of resource distribution, workload management, and infrastructure swarming, thus removing the necessity for Docker, MLOps, or DevOps practices. Additionally, its cognitive infrastructure layer, along with a burst-to-cloud engine, guarantees optimal functionality regardless of whether the system operates on-premises or in the cloud. By automating many tasks that typically slow down AI model development, SwarmOne empowers data scientists to concentrate solely on their scientific endeavors, which significantly enhances GPU utilization. This allows organizations to accelerate their AI initiatives, ultimately leading to more rapid innovation in their respective fields.
  • 26
    Oracle Container Engine for Kubernetes Reviews
    Oracle's Container Engine for Kubernetes (OKE) serves as a managed container orchestration solution that significantly minimizes both the time and expenses associated with developing contemporary cloud-native applications. In a departure from many competitors, Oracle Cloud Infrastructure offers OKE as a complimentary service that operates on high-performance and cost-efficient compute shapes. DevOps teams benefit from the ability to utilize unaltered, open-source Kubernetes, enhancing application workload portability while streamlining operations through automated updates and patch management. Users can initiate the deployment of Kubernetes clusters along with essential components like virtual cloud networks, internet gateways, and NAT gateways with just a single click. Furthermore, the platform allows for the automation of Kubernetes tasks via a web-based REST API and a command-line interface (CLI), covering all aspects from cluster creation to scaling and maintenance. Notably, Oracle does not impose any fees for managing clusters, making it an attractive option for developers. Additionally, users can effortlessly and swiftly upgrade their container clusters without experiencing any downtime, ensuring they remain aligned with the latest stable Kubernetes version. This combination of features positions Oracle's offering as a robust solution for organizations looking to optimize their cloud-native development processes.
  • 27
    HashiCorp Nomad Reviews
    A versatile and straightforward workload orchestrator designed to deploy and oversee both containerized and non-containerized applications seamlessly across on-premises and cloud environments at scale. This efficient tool comes as a single 35MB binary that effortlessly fits into your existing infrastructure. It provides an easy operational experience whether on-prem or in the cloud, maintaining minimal overhead. Capable of orchestrating various types of applications—not limited to just containers—it offers top-notch support for Docker, Windows, Java, VMs, and more. By introducing orchestration advantages, it helps enhance existing services. Users can achieve zero downtime deployments, increased resilience, and improved resource utilization without the need for containerization. A single command allows for multi-region, multi-cloud federation, enabling global application deployment to any region using Nomad as a cohesive control plane. This results in a streamlined workflow for deploying applications to either bare metal or cloud environments. Additionally, Nomad facilitates the development of multi-cloud applications with remarkable ease and integrates smoothly with Terraform, Consul, and Vault for efficient provisioning, service networking, and secrets management, making it an indispensable tool in modern application management.
  • 28
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 29
    Rancher Reviews
    Rancher empowers you to provide Kubernetes-as-a-Service across various environments, including datacenters, cloud, and edge. This comprehensive software stack is designed for teams transitioning to container technology, tackling both operational and security issues associated with managing numerous Kubernetes clusters. Moreover, it equips DevOps teams with integrated tools to efficiently handle containerized workloads. With Rancher’s open-source platform, users can deploy Kubernetes in any setting. Evaluating Rancher against other top Kubernetes management solutions highlights its unique delivery capabilities. You won’t have to navigate the complexities of Kubernetes alone, as Rancher benefits from a vast community of users. Developed by Rancher Labs, this software is tailored to assist enterprises in seamlessly implementing Kubernetes-as-a-Service across diverse infrastructures. When it comes to deploying critical workloads on Kubernetes, our community can rely on us for exceptional support, ensuring they are never left in the lurch. In addition, Rancher's commitment to continuous improvement means that users will always have access to the latest features and enhancements.
  • 30
    DxEnterprise Reviews
    DxEnterprise is a versatile Smart Availability software that operates across multiple platforms, leveraging its patented technology to support Windows Server, Linux, and Docker environments. This software effectively manages various workloads at the instance level and extends its capabilities to Docker containers as well. DxEnterprise (DxE) is specifically tuned for handling native or containerized Microsoft SQL Server deployments across all platforms, making it a valuable tool for database administrators. Additionally, it excels in managing Oracle databases on Windows systems. Beyond its compatibility with Windows file shares and services, DxE offers support for a wide range of Docker containers on both Windows and Linux, including popular relational database management systems such as Oracle, MySQL, PostgreSQL, MariaDB, and MongoDB. Furthermore, it accommodates cloud-native SQL Server availability groups (AGs) within containers, ensuring compatibility with Kubernetes clusters and diverse infrastructure setups. DxE's seamless integration with Azure shared disks enhances high availability for clustered SQL Server instances in cloud environments, making it an ideal solution for businesses seeking reliability in their database operations. Its robust features position it as an essential asset for organizations aiming to maintain uninterrupted service and optimal performance.
  • 31
    SUSE Rancher Prime Reviews
    SUSE Rancher Prime meets the requirements of DevOps teams involved in Kubernetes application deployment as well as IT operations responsible for critical enterprise services. It is compatible with any CNCF-certified Kubernetes distribution, while also providing RKE for on-premises workloads. In addition, it supports various public cloud offerings such as EKS, AKS, and GKE, and offers K3s for edge computing scenarios. The platform ensures straightforward and consistent cluster management, encompassing tasks like provisioning, version oversight, visibility and diagnostics, as well as monitoring and alerting, all backed by centralized audit capabilities. Through SUSE Rancher Prime, automation of processes is achieved, and uniform user access and security policies are enforced across all clusters, regardless of their deployment environment. Furthermore, it features an extensive catalog of services designed for the development, deployment, and scaling of containerized applications, including tools for app packaging, CI/CD, logging, monitoring, and implementing service mesh solutions, thereby streamlining the entire application lifecycle. This comprehensive approach not only enhances operational efficiency but also simplifies the management of complex environments.
  • 32
    Amazon EC2 Trn1 Instances Reviews
    The Trn1 instances of Amazon Elastic Compute Cloud (EC2), driven by AWS Trainium chips, are specifically designed to enhance the efficiency of deep learning training for generative AI models, such as large language models and latent diffusion models. These instances provide significant cost savings of up to 50% compared to other similar Amazon EC2 offerings. They are capable of facilitating the training of deep learning and generative AI models with over 100 billion parameters, applicable in various domains, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. Additionally, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on the AWS Inferentia chips. With seamless integration into popular frameworks like PyTorch and TensorFlow, developers can leverage their current codebases and workflows for training on Trn1 instances, ensuring a smooth transition to optimized deep learning practices. Furthermore, this capability allows businesses to harness advanced AI technologies while maintaining cost-effectiveness and performance.
  • 33
    Lumino Reviews
    Introducing a pioneering compute protocol that combines integrated hardware and software for the training and fine-tuning of AI models. Experience a reduction in training expenses by as much as 80%. You can deploy your models in mere seconds, utilizing either open-source templates or your own customized models. Effortlessly debug your containers while having access to vital resources such as GPU, CPU, Memory, and other performance metrics. Real-time log monitoring allows for immediate insights into your processes. Maintain complete accountability by tracing all models and training datasets with cryptographically verified proofs. Command the entire training workflow effortlessly with just a few straightforward commands. Additionally, you can earn block rewards by contributing your computer to the network, while also tracking essential metrics like connectivity and uptime to ensure optimal performance. The innovative design of this system not only enhances efficiency but also promotes a collaborative environment for AI development.
  • 34
    QpiAI Reviews
    QpiAI Pro is an innovative no-code AutoML and MLOps platform that simplifies AI development by leveraging generative AI tools for tasks such as automated data annotation, fine-tuning foundation models, and facilitating scalable deployment. The platform provides a range of flexible deployment options designed to accommodate the specific requirements of enterprises, including cloud VPC deployment within an enterprise VPC on public clouds, a managed service on public cloud featuring an integrated QpiAI serverless billing system, and deployment within enterprise data centers to ensure full control over security and compliance. These deployment solutions significantly boost operational efficiency while granting comprehensive access to the platform's features. Additionally, QpiAI Pro is an integral component of QpiAI’s product suite, which synergizes AI and quantum technology to address intricate scientific and business challenges across diverse sectors. This robust integration empowers organizations to harness cutting-edge technology for improved decision-making and innovation.
  • 35
    MosaicML Reviews
    Easily train and deploy large-scale AI models with just a single command by pointing to your S3 bucket—then let us take care of everything else, including orchestration, efficiency, node failures, and infrastructure management. The process is straightforward and scalable, allowing you to utilize MosaicML to train and serve large AI models using your own data within your secure environment. Stay ahead of the curve with our up-to-date recipes, techniques, and foundation models, all developed and thoroughly tested by our dedicated research team. With only a few simple steps, you can deploy your models within your private cloud, ensuring that your data and models remain behind your own firewalls. You can initiate your project in one cloud provider and seamlessly transition to another without any disruptions. Gain ownership of the model trained on your data while being able to introspect and clarify the decisions made by the model. Customize content and data filtering to align with your business requirements, and enjoy effortless integration with your existing data pipelines, experiment trackers, and other essential tools. Our solution is designed to be fully interoperable, cloud-agnostic, and validated for enterprise use, ensuring reliability and flexibility for your organization. Additionally, the ease of use and the power of our platform allow teams to focus more on innovation rather than infrastructure management.
  • 36
    GMI Cloud Reviews

    GMI Cloud

    GMI Cloud

    $2.50 per hour
    Create your generative AI solutions in just a few minutes with GMI GPU Cloud. GMI Cloud goes beyond simple bare metal offerings by enabling you to train, fine-tune, and run cutting-edge models seamlessly. Our clusters come fully prepared with scalable GPU containers and widely-used ML frameworks, allowing for immediate access to the most advanced GPUs tailored for your AI tasks. Whether you seek flexible on-demand GPUs or dedicated private cloud setups, we have the perfect solution for you. Optimize your GPU utility with our ready-to-use Kubernetes software, which simplifies the process of allocating, deploying, and monitoring GPUs or nodes through sophisticated orchestration tools. You can customize and deploy models tailored to your data, enabling rapid development of AI applications. GMI Cloud empowers you to deploy any GPU workload swiftly and efficiently, allowing you to concentrate on executing ML models instead of handling infrastructure concerns. Launching pre-configured environments saves you valuable time by eliminating the need to build container images, install software, download models, and configure environment variables manually. Alternatively, you can utilize your own Docker image to cater to specific requirements, ensuring flexibility in your development process. With GMI Cloud, you'll find that the path to innovative AI applications is smoother and faster than ever before.
  • 37
    Azure AI Services Reviews
    Create state-of-the-art, commercially viable AI solutions using both pre-built and customizable APIs and models. Seamlessly integrate generative AI into your production processes through various studios, SDKs, and APIs. Enhance your competitive position by developing AI applications that leverage foundational models from prominent sources like OpenAI, Meta, and Microsoft. Implement safeguards against misuse with integrated responsible AI practices, top-tier Azure security features, and specialized tools for ethical AI development. Design your own copilot and generative AI solutions utilizing advanced language and vision models. Access the most pertinent information through keyword, vector, and hybrid search methodologies. Continuously oversee text and visual content to identify potentially harmful or inappropriate material. Effortlessly translate documents and text in real time, supporting over 100 different languages while ensuring accessibility for diverse audiences. This comprehensive toolkit empowers developers to innovate while prioritizing safety and efficiency in AI deployment.
  • 38
    OpenSVC Reviews
    OpenSVC is an innovative open-source software solution aimed at boosting IT productivity through a comprehensive suite of tools that facilitate service mobility, clustering, container orchestration, configuration management, and thorough infrastructure auditing. The platform is divided into two primary components: the agent and the collector. Acting as a supervisor, clusterware, container orchestrator, and configuration manager, the agent simplifies the deployment, management, and scaling of services across a variety of environments, including on-premises systems, virtual machines, and cloud instances. It is compatible with multiple operating systems, including Unix, Linux, BSD, macOS, and Windows, and provides an array of features such as cluster DNS, backend networks, ingress gateways, and scalers to enhance functionality. Meanwhile, the collector plays a crucial role by aggregating data reported by agents and retrieving information from the site’s infrastructure, which encompasses networks, SANs, storage arrays, backup servers, and asset managers. This collector acts as a dependable, adaptable, and secure repository for data, ensuring that IT teams have access to vital information for decision-making and operational efficiency. Together, these components empower organizations to streamline their IT processes and maximize resource utilization effectively.
  • 39
    WhiteFiber Reviews
    WhiteFiber operates as a comprehensive AI infrastructure platform that specializes in delivering high-performance GPU cloud services and HPC colocation solutions specifically designed for AI and machine learning applications. Their cloud services are meticulously engineered for tasks involving machine learning, expansive language models, and deep learning, equipped with advanced NVIDIA H200, B200, and GB200 GPUs alongside ultra-fast Ethernet and InfiniBand networking, achieving an impressive GPU fabric bandwidth of up to 3.2 Tb/s. Supporting a broad range of scaling capabilities from hundreds to tens of thousands of GPUs, WhiteFiber offers various deployment alternatives such as bare metal, containerized applications, and virtualized setups. The platform guarantees enterprise-level support and service level agreements (SLAs), incorporating unique cluster management, orchestration, and observability tools. Additionally, WhiteFiber’s data centers are strategically optimized for AI and HPC colocation, featuring high-density power, direct liquid cooling systems, and rapid deployment options, while also ensuring redundancy and scalability through cross-data center dark fiber connectivity. With a commitment to innovation and reliability, WhiteFiber stands out as a key player in the AI infrastructure ecosystem.
  • 40
    VMware Private AI Foundation Reviews
    VMware Private AI Foundation is a collaborative, on-premises generative AI platform based on VMware Cloud Foundation (VCF), designed for enterprises to execute retrieval-augmented generation workflows, customize and fine-tune large language models, and conduct inference within their own data centers, effectively addressing needs related to privacy, choice, cost, performance, and compliance. This platform integrates the Private AI Package—which includes vector databases, deep learning virtual machines, data indexing and retrieval services, and AI agent-builder tools—with NVIDIA AI Enterprise, which features NVIDIA microservices such as NIM, NVIDIA's proprietary language models, and various third-party or open-source models from sources like Hugging Face. It also provides comprehensive GPU virtualization, performance monitoring, live migration capabilities, and efficient resource pooling on NVIDIA-certified HGX servers, equipped with NVLink/NVSwitch acceleration technology. Users can deploy the system through a graphical user interface, command line interface, or API, thus ensuring cohesive management through self-service provisioning and governance of the model store, among other features. Additionally, this innovative platform empowers organizations to harness the full potential of AI while maintaining control over their data and infrastructure.
  • 41
    IBM watsonx.ai Reviews
    Introducing an advanced enterprise studio designed for AI developers to effectively train, validate, fine-tune, and deploy AI models. The IBM® watsonx.ai™ AI studio is an integral component of the IBM watsonx™ AI and data platform, which unifies innovative generative AI capabilities driven by foundation models alongside traditional machine learning techniques, creating a robust environment that covers the entire AI lifecycle. Users can adjust and direct models using their own enterprise data to fulfill specific requirements, benefiting from intuitive tools designed for constructing and optimizing effective prompts. With watsonx.ai, you can develop AI applications significantly faster and with less data than ever before. Key features of watsonx.ai include: comprehensive AI governance that empowers enterprises to enhance and amplify the use of AI with reliable data across various sectors, and versatile, multi-cloud deployment options that allow seamless integration and execution of AI workloads within your preferred hybrid-cloud architecture. This makes it easier than ever for businesses to harness the full potential of AI technology.
  • 42
    CAPE Reviews

    CAPE

    Biqmind

    $20 per month
    Simplifying Multi-Cloud and Multi-Cluster Kubernetes application deployment and migration is now easier than ever with CAPE. Unlock the full potential of your Kubernetes capabilities with its key features, including Disaster Recovery that allows seamless backup and restore for stateful applications. With robust Data Mobility and Migration, you can securely manage and transfer applications and data across on-premises, private, and public cloud environments. CAPE also facilitates Multi-cluster Application Deployment, enabling stateful applications to be deployed efficiently across various clusters and clouds. Its intuitive Drag & Drop CI/CD Workflow Manager simplifies the configuration and deployment of complex CI/CD pipelines, making it accessible for users at all levels. The versatility of CAPE™ enhances Kubernetes operations by streamlining Disaster Recovery processes, facilitating Cluster Migration and Upgrades, ensuring Data Protection, enabling Data Cloning, and expediting Application Deployment. Moreover, CAPE provides a comprehensive control plane for federating clusters and managing applications and services seamlessly across diverse environments. This innovative tool brings clarity and efficiency to Kubernetes management, ensuring your applications thrive in a multi-cloud landscape.
  • 43
    Spectro Cloud Palette Reviews
    Spectro Cloud’s Palette platform provides enterprises with a powerful and scalable solution for managing Kubernetes clusters across multiple environments, including cloud, edge, and on-premises data centers. By leveraging full-stack declarative orchestration, Palette allows teams to define cluster profiles that ensure consistency while preserving the freedom to customize infrastructure, container workloads, OS, and Kubernetes distributions. The platform’s lifecycle management capabilities streamline cluster provisioning, upgrades, and maintenance across hybrid and multi-cloud setups. It also integrates with a wide range of tools and services, including major cloud providers like AWS, Azure, and Google Cloud, as well as Kubernetes distributions such as EKS, OpenShift, and Rancher. Security is a priority, with Palette offering enterprise-grade compliance certifications such as FIPS and FedRAMP, making it suitable for government and regulated industries. Additionally, the platform supports advanced use cases like AI workloads at the edge, virtual clusters, and multitenancy for ISVs. Deployment options are flexible, covering self-hosted, SaaS, or airgapped environments to suit diverse operational needs. This makes Palette a versatile platform for organizations aiming to reduce complexity and increase operational control over Kubernetes.
  • 44
    Bright Cluster Manager Reviews
    Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
  • 45
    F5 Distributed Cloud App Stack Reviews
    Manage and orchestrate applications seamlessly on a Kubernetes platform that is fully managed, utilizing a centralized SaaS approach for overseeing distributed applications through a unified interface and advanced observability features. Streamline operations by handling deployments uniformly across on-premises, cloud, and edge environments. Experience effortless management and scaling of applications across various Kubernetes clusters, whether at customer locations or within the F5 Distributed Cloud Regional Edge, all through a single Kubernetes-compatible API that simplifies multi-cluster oversight. You can deploy, deliver, and secure applications across different sites as if they were all part of one cohesive "virtual" location. Furthermore, ensure that distributed applications operate with consistent, production-grade Kubernetes, regardless of their deployment sites, which can range from private and public clouds to edge environments. Enhance security with a zero trust approach at the Kubernetes Gateway, extending ingress services backed by WAAP, service policy management, and comprehensive network and application firewall protections. This approach not only secures your applications but also fosters a more resilient and adaptable infrastructure.