PanGu-Σ Description
Recent breakthroughs in natural language processing, comprehension, and generation have been greatly influenced by the development of large language models. This research presents a system that employs Ascend 910 AI processors and the MindSpore framework to train a language model exceeding one trillion parameters, specifically 1.085 trillion, referred to as PanGu-{\Sigma}. This model enhances the groundwork established by PanGu-{\alpha} by converting the conventional dense Transformer model into a sparse format through a method known as Random Routed Experts (RRE). Utilizing a substantial dataset of 329 billion tokens, the model was effectively trained using a strategy called Expert Computation and Storage Separation (ECSS), which resulted in a remarkable 6.3-fold improvement in training throughput through the use of heterogeneous computing. Through various experiments, it was found that PanGu-{\Sigma} achieves a new benchmark in zero-shot learning across multiple downstream tasks in Chinese NLP, showcasing its potential in advancing the field. This advancement signifies a major leap forward in the capabilities of language models, illustrating the impact of innovative training techniques and architectural modifications.
Integrations
Company Details
Media
Product Details
PanGu-Σ Features and Options
PanGu-Σ User Reviews
Write a Review- Previous
- Next