Best Pachyderm Alternatives in 2024

Find the top alternatives to Pachyderm currently available. Compare ratings, reviews, pricing, and features of Pachyderm alternatives in 2024. Slashdot lists the best Pachyderm alternatives on the market that offer competing products that are similar to Pachyderm. Sort through Pachyderm alternatives below to make the best choice for your needs

  • 1
    BytePlus Recommend Reviews
    See Software
    Learn More
    Compare Both
    Fully managed service that provides product recommendations tailored to the needs of your customers. BytePlus recommend draws on our machine learning expertise to provide dynamic and targeted recommendations. Our industry-leading team has a track history of delivering recommendations on some of the most popular platforms in the world. To engage users better and make personalized suggestions based upon customer behavior, you can use the data from your users. BytePlus recommend is easy to use, leveraging your existing infrastructure and automating the machine-learning workflow. BytePlus recommend leverages our research on machine learning to deliver personalized recommendations that are tailored to your audience's preferences. Our algorithm team is highly skilled and can develop customized strategies to meet changing business goals and needs. Pricing is determined based on A/B testing results. Based on your business needs, optimization goals are set.
  • 2
    Qloo Reviews
    Top Pick
    See Software
    Learn More
    Compare Both
    Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
  • 3
    MLflow Reviews
    MLflow is an open-source platform that manages the ML lifecycle. It includes experimentation, reproducibility and deployment. There is also a central model registry. MLflow currently has four components. Record and query experiments: data, code, config, results. Data science code can be packaged in a format that can be reproduced on any platform. Machine learning models can be deployed in a variety of environments. A central repository can store, annotate and discover models, as well as manage them. The MLflow Tracking component provides an API and UI to log parameters, code versions and metrics. It can also be used to visualize the results later. MLflow Tracking allows you to log and query experiments using Python REST, R API, Java API APIs, and REST. An MLflow Project is a way to package data science code in a reusable, reproducible manner. It is based primarily upon conventions. The Projects component also includes an API and command line tools to run projects.
  • 4
    Union Cloud Reviews
    Union.ai Benefits: - Accelerated Data Processing & ML: Union.ai significantly speeds up data processing and machine learning. - Built on Trusted Open-Source: Leverages the robust open-source project Flyte™, ensuring a reliable and tested foundation for your ML projects. - Kubernetes Efficiency: Harnesses the power and efficiency of Kubernetes along with enhanced observability and enterprise features. - Optimized Infrastructure: Facilitates easier collaboration among Data and ML teams on optimized infrastructures, boosting project velocity. - Breaks Down Silos: Tackles the challenges of distributed tooling and infrastructure by simplifying work-sharing across teams and environments with reusable tasks, versioned workflows, and an extensible plugin system. - Seamless Multi-Cloud Operations: Navigate the complexities of on-prem, hybrid, or multi-cloud setups with ease, ensuring consistent data handling, secure networking, and smooth service integrations. - Cost Optimization: Keeps a tight rein on your compute costs, tracks usage, and optimizes resource allocation even across distributed providers and instances, ensuring cost-effectiveness.
  • 5
    Qwak Reviews
    Qwak build system allows data scientists to create an immutable, tested production-grade artifact by adding "traditional" build processes. Qwak build system standardizes a ML project structure that automatically versions code, data, and parameters for each model build. Different configurations can be used to build different builds. It is possible to compare builds and query build data. You can create a model version using remote elastic resources. Each build can be run with different parameters, different data sources, and different resources. Builds create deployable artifacts. Artifacts built can be reused and deployed at any time. Sometimes, however, it is not enough to deploy the artifact. Qwak allows data scientists and engineers to see how a build was made and then reproduce it when necessary. Models can contain multiple variables. The data models were trained using the hyper parameter and different source code.
  • 6
    Prevision Reviews
    It can take weeks, months or even years to build a model. Reproducing model results, maintaining version control and auditing past work can be complex. Model building is an iterative task. It is important to record each step and how you got there. A model should not be a file that is hidden somewhere. It should be a tangible object that can be tracked and analyzed by all parties. Prevision.io allows users to track each experiment as they train it. You can also view its characteristics, automated analyses, versions, and version history as your project progresses, regardless of whether you used our AutoML or other tools. To build highly performant models, you can automatically experiment with dozens upon dozens of feature engineering strategies. The engine automatically tests different feature engineering strategies for each type of data in a single command. Tabular, text, and images are all options to maximize the information in your data.
  • 7
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 8
    Keepsake Reviews
    Keepsake, an open-source Python tool, is designed to provide versioning for machine learning models and experiments. It allows users to track code, hyperparameters and training data. It also tracks metrics and Python dependencies. Keepsake integrates seamlessly into existing workflows. It requires minimal code additions and allows users to continue training while Keepsake stores code and weights in Amazon S3 or Google Cloud Storage. This allows for the retrieval and deployment of code or weights at any checkpoint. Keepsake is compatible with a variety of machine learning frameworks including TensorFlow and PyTorch. It also supports scikit-learn and XGBoost. It also has features like experiment comparison that allow users to compare parameters, metrics and dependencies between experiments.
  • 9
    Automaton AI Reviews
    Automaton AI's Automaton AI's DNN model and training data management tool, ADVIT, allows you to create, manage, and maintain high-quality models and training data in one place. Automated optimization of data and preparation for each stage of the computer vision pipeline. Automate data labeling and streamline data pipelines in house Automate the management of structured and unstructured video/image/text data and perform automated functions to refine your data before each step in the deep learning pipeline. You can train your own model with accurate data labeling and quality assurance. DNN training requires hyperparameter tuning such as batch size, learning rate, and so on. To improve accuracy, optimize and transfer the learning from trained models. After training, the model can be put into production. ADVIT also does model versioning. Run-time can track model development and accuracy parameters. A pre-trained DNN model can be used to increase the accuracy of your model for auto-labeling.
  • 10
    MLReef Reviews
    MLReef allows domain experts and data scientists secure collaboration via a hybrid approach of pro-code and no-code development. Distributed workloads lead to a 75% increase in productivity. This allows teams to complete more ML project faster. Domain experts and data scientists can collaborate on the same platform, reducing communication ping-pong to 100%. MLReef works at your location and enables you to ensure 100% reproducibility and continuity. You can rebuild all work at any moment. To create interoperable, versioned, explorable AI modules, you can use git repositories that are already well-known. Your data scientists can create AI modules that you can drag and drop. These modules can be modified by parameters, ported, interoperable and explorable within your organization. Data handling requires a lot of expertise that even a single data scientist may not have. MLReef allows your field experts to assist you with data processing tasks, reducing complexity.
  • 11
    Graviti Reviews
    Unstructured data is the future for AI. This future is now possible. Build an ML/AI pipeline to scale all your unstructured data from one place. Graviti allows you to use better data to create better models. Learn about Graviti, the data platform that allows AI developers to manage, query and version control unstructured data. Quality data is no longer an expensive dream. All your metadata, annotations, and predictions can be managed in one place. You can customize filters and see the results of filtering to find the data that meets your needs. Use a Git-like system to manage data versions and collaborate. Role-based access control allows for safe and flexible team collaboration. Graviti's built in marketplace and workflow creator makes it easy to automate your data pipeline. No more grinding, you can quickly scale up to rapid model iterations.
  • 12
    Polyaxon Reviews
    A platform for machine learning and deep learning applications that is reproducible and scaleable. Learn more about the products and features that make up today's most innovative platform to manage data science workflows. Polyaxon offers an interactive workspace that includes notebooks, tensorboards and visualizations. You can collaborate with your team and share and compare results. Reproducible results are possible with the built-in version control system for code and experiments. Polyaxon can be deployed on-premises, in the cloud, or in hybrid environments. This includes single laptops, container management platforms, and Kubernetes. You can spin up or down, add nodes, increase storage, and add more GPUs.
  • 13
    Valohai Reviews

    Valohai

    Valohai

    $560 per month
    Pipelines are permanent, models are temporary. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform to automate everything, from data extraction to model deployment. Automate everything, from data extraction to model installation. Automatically store every model, experiment, and artifact. Monitor and deploy models in a Kubernetes cluster. Just point to your code and hit "run". Valohai launches workers and runs your experiments. Then, Valohai shuts down the instances. You can create notebooks, scripts, or shared git projects using any language or framework. Our API allows you to expand endlessly. Track each experiment and trace back to the original training data. All data can be audited and shared.
  • 14
    neptune.ai Reviews

    neptune.ai

    neptune.ai

    $49 per month
    Neptune.ai, a platform for machine learning operations, is designed to streamline tracking, organizing and sharing of experiments, and model-building. It provides a comprehensive platform for data scientists and machine-learning engineers to log, visualise, and compare model training run, datasets and hyperparameters in real-time. Neptune.ai integrates seamlessly with popular machine-learning libraries, allowing teams to efficiently manage research and production workflows. Neptune.ai's features, which include collaboration, versioning and reproducibility of experiments, enhance productivity and help ensure that machine-learning projects are transparent and well documented throughout their lifecycle.
  • 15
    Altair Knowledge Studio Reviews
    Altair is used by data scientists and business analysts to extract actionable insights from their data. Knowledge Studio is a market-leading, easy-to-use machine learning and predictive analytics tool that quickly visualizes data and generates explainable results. It doesn't require a single line code. Knowledge Studio, a recognized leader in analytics, brings transparency and automation into machine learning with features like AutoML and explainable AI. You have complete control over how models are built and configured. Knowledge Studio is designed for collaboration across the business. Complex projects can be completed by data scientists and business analysts in minutes, hours, or even days. Results are easy to understand and explain. Data scientists can quickly create machine learning models using less time than coding or using other tools because of the ease of use and automation of modeling steps.
  • 16
    Weights & Biases Reviews
    Weights & Biases allows for experiment tracking, hyperparameter optimization and model and dataset versioning. With just 5 lines of code, you can track, compare, and visualise ML experiments. Add a few lines of code to your script and you'll be able to see live updates to your dashboard each time you train a different version of your model. Our hyperparameter search tool is scalable to a massive scale, allowing you to optimize models. Sweeps plug into your existing infrastructure and are lightweight. Save all the details of your machine learning pipeline, including data preparation, data versions, training and evaluation. It's easier than ever to share project updates. Add experiment logging to your script in a matter of minutes. Our lightweight integration is compatible with any Python script. W&B Weave helps developers build and iterate their AI applications with confidence.
  • 17
    Lightly Reviews
    Select the subset of data that has the greatest impact on the accuracy of your model. This allows you to improve your model by using the best data in retraining. Reduce data redundancy and bias and focus on edge cases to get the most from your data. Lightly's algorithms are capable of processing large amounts of data in less than 24 hour. Connect Lightly with your existing buckets to process new data automatically. Our API automates the entire data selection process. Use the latest active learning algorithms. Combining active- and selfsupervised learning algorithms lightly for data selection. Combining model predictions, embeddings and metadata will help you achieve your desired distribution of data. Improve your model's performance by understanding data distribution, bias and edge cases. Manage data curation and keep track of the new data for model training and labeling. Installation is easy via a Docker Image and cloud storage integration. No data leaves your infrastructure.
  • 18
    SensiML Analytics Studio Reviews
    Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Compact algorithms can be created that run on small IoT devices and not in the cloud. Collect precise, traceable, and version-controlled datasets. Advanced AutoML code-gen is used to quickly create autonomous working device code. You can choose your interface and level of AI expertise. All aspects of your algorithm will remain accessible to you. Edge tuning models can be built that adapt to the data they receive. SensiML Analytics Toolkit suite automates every step of the process to create optimized AI IoT sensor recognition codes. The workflow employs a growing number of advanced ML algorithms and AI algorithms to generate code that can learn new data, either in the development phase or once it is deployed. The key tools for healthcare decision support are non-invasive, rapid screening applications that use intelligent classification of one or several bio-sensing inputs.
  • 19
    AlxBlock Reviews

    AlxBlock

    AlxBlock

    $50 per month
    AIxBlock is an end-to-end blockchain-based platform for AI that harnesses unused computing resources of BTC miners, as well as all global consumer GPUs. Our platform's training method is a hybrid machine learning approach that allows simultaneous training on multiple nodes. We use the DeepSpeed-TED method, a three-dimensional hybrid parallel algorithm which integrates data, tensor and expert parallelism. This allows for the training of Mixture of Experts models (MoE) on base models that are 4 to 8x larger than the current state of the art. The platform will identify and add compatible computing resources from the computing marketplace to the existing cluster of training nodes, and distribute the ML model for unlimited computations. This process unfolds dynamically and automatically, culminating in decentralized supercomputers which facilitate AI success.
  • 20
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 21
    Yandex DataSphere Reviews

    Yandex DataSphere

    Yandex.Cloud

    $0.095437 per GB
    Select the configurations and resources required for specific code segments within your project. It only takes seconds to save and apply changes in a training scenario. Select the right configuration of computing resources to launch training models in a matter of seconds. All will be created automatically, without the need to manage infrastructure. Select a serverless or dedicated operating mode. All in one interface, manage project data, save to datasets and connect to databases, object storage or other repositories. Create a ML model with colleagues from around the world, share the project and set budgets across your organization. Launch your ML within minutes, without developers' help. Try out experiments with different models being published simultaneously.
  • 22
    Pathway Reviews
    Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models
  • 23
    Amazon SageMaker Data Wrangler Reviews
    Amazon SageMaker Data Wrangler cuts down the time it takes for data preparation and aggregation for machine learning (ML). This reduces the time taken from weeks to minutes. SageMaker Data Wrangler makes it easy to simplify the process of data preparation. It also allows you to complete every step of the data preparation workflow (including data exploration, cleansing, visualization, and scaling) using a single visual interface. SQL can be used to quickly select the data you need from a variety of data sources. The Data Quality and Insights Report can be used to automatically check data quality and detect anomalies such as duplicate rows or target leakage. SageMaker Data Wrangler has over 300 built-in data transforms that allow you to quickly transform data without having to write any code. After you've completed your data preparation workflow you can scale it up to your full datasets with SageMaker data processing jobs. You can also train, tune and deploy models using SageMaker data processing jobs.
  • 24
    ScoopML Reviews
    It's easy to build advanced predictive models with no math or coding in just a few clicks. The Complete Experience We provide everything you need, from cleaning data to building models to forecasting, and everything in between. Trustworthy. Learn the "why" behind AI decisions to drive business with actionable insight. Data Analytics in minutes without having to write code. In one click, you can complete the entire process of building ML algorithms, explaining results and predicting future outcomes. Machine Learning in 3 Steps You can go from raw data to actionable insights without writing a single line code. Upload your data. Ask questions in plain English Find the best model for your data. Share your results. Increase customer productivity We assist companies to use no code Machine Learning to improve their Customer Experience.
  • 25
    ShaipCloud Reviews
    Experience unmatched functionality with a cutting-edge AI data platform. It works smarter and delivers quality data to launch successful AI projects. ShaipCloud uses patented technology to collect and track workloads, transcribe and monitor audio and utterances and annotate texts, images and videos, as well manage quality control and data transfer. Your AI project will receive the highest-quality data. ShaipCloud not only provides you with high-quality data quickly and at a low cost, but also grows along with your AI project as it grows. This is due to its scalability and integrations of the platform that are required to make your work easier and deliver successful outcomes. The platform reduces friction in working with a global workforce and offers greater visibility and real-time control. There are data platforms. There are AI data platforms. The ShaipCloud Human-in-the Loop platform is a secure platform that allows users to collect, transform, and annotate their data.
  • 26
    Oracle Data Science Reviews
    Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results.
  • 27
    MyDataModels TADA Reviews

    MyDataModels TADA

    MyDataModels

    $5347.46 per year
    MyDataModels' best-in-class predictive analytics model TADA allows professionals to use their Small Data to improve their business. It is a simple-to-use tool that is easy to set up. TADA is a predictive modeling tool that delivers fast and useful results. With our 40% faster automated data preparation, you can transform your time from days to just a few hours to create ad-hoc effective models. You can get results from your data without any programming or machine learning skills. Make your time more efficient with easy-to-understand models that are clear and understandable. You can quickly turn your data into insights on any platform and create automated models that are effective. TADA automates the process of creating predictive models. Our web-based pre-processing capabilities allow you to create and run machine learning models from any device or platform.
  • 28
    Predibase Reviews
    Declarative machine-learning systems offer the best combination of flexibility and simplicity, allowing for the fastest way to implement state-of-the art models. The system works by asking users to specify the "what" and then the system will figure out the "how". Start with smart defaults and iterate down to the code level on parameters. With Ludwig at Uber, and Overton from Apple, our team pioneered declarative machine-learning systems in industry. You can choose from our pre-built data connectors to support your databases, data warehouses and lakehouses as well as object storage. You can train state-of the-art deep learning models without having to manage infrastructure. Automated Machine Learning achieves the right balance between flexibility and control in a declarative manner. You can train and deploy models quickly using a declarative approach.
  • 29
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 30
    Baidu AI Cloud Machine Learning (BML) Reviews
    Baidu AI Cloud Machine Learning is an end-toend machine learning platform for enterprises and AI developers. It can perform data preprocessing, model evaluation and training, as well as service deployments. The Baidu AI Cloud AI Development Platform BML is a platform for AI development and deployment. BML allows users to perform data pre-processing and model training, evaluation, service deployment and other tasks. The platform offers a high-performance training environment for clusters, a massive algorithm framework and model cases as well as easy to use prediction service tools. It allows users to concentrate on the algorithm and model, and achieve excellent model and predictions results. The interactive programming environment is fully hosted and allows for data processing and code debugging. The CPU instance allows users to customize the environment and install third-party software libraries.
  • 31
    Salford Predictive Modeler (SPM) Reviews
    The Salford Predictive Modeler® (SPM), software suite, is highly accurate and extremely fast for developing predictive, descriptive, or analytical models. Salford Predictive Modeler®, which includes the CART®, TreeNet®, Random Forests® engines, and powerful new automation capabilities and modeling capabilities that are not available elsewhere, is a software suite that includes the MARS®, CART®, TreeNet[r], and TreeNet®. The SPM software suite's data mining technologies span classification, regression, survival analysis, missing value analysis, data binning and clustering/segmentation. SPM algorithms are essential in advanced data science circles. Automation of model building is made easier by the SPM software suite. It automates significant portions of the model exploration, refinement, and refinement process for analysts. We combine all results from different modeling strategies into one package for easy review.
  • 32
    datuum.ai Reviews
    Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes.
  • 33
    FortressIQ Reviews
    FortressIQ is the industry's most advanced process-intelligence platform. It allows enterprises to decode work and transform experiences. FortressIQ combines innovative computer vision with artificial intelligence to provide unprecedented process insights. It is extremely fast and delivers detail and accuracy that are unattainable using traditional methods. The platform automatically acquires process data across multiple systems. This empowers enterprises to understand, monitor and improve their operations, employee and customer experience, and every business process. FortressIQ was established in 2017 and is supported by Lightspeed Venture Partners and Boldstart Ventures as well as Comcast Ventures and Eniac Ventures. Continuously and automatically identify inefficiencies and process variations to determine optimal process paths and reduce time to automate.
  • 34
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 35
    Obviously AI Reviews

    Obviously AI

    Obviously AI

    $75 per month
    All the steps involved in building machine learning algorithms and predicting results, all in one click. Data Dialog allows you to easily shape your data without having to wrangle your files. Your prediction reports can be shared with your team members or made public. Let anyone make predictions on your model. Our low-code API allows you to integrate dynamic ML predictions directly into your app. Real-time prediction of willingness to pay, score leads, and many other things. AI gives you access to the most advanced algorithms in the world, without compromising on performance. Forecast revenue, optimize supply chain, personalize your marketing. Now you can see what the next steps are. In minutes, you can add a CSV file or integrate with your favorite data sources. Select your prediction column from the dropdown and we'll automatically build the AI. Visualize the top drivers, predicted results, and simulate "what-if?" scenarios.
  • 36
    SANCARE Reviews
    SANCARE is a start up that specializes in Machine Learning applied to hospital data. We work with some of the most respected scientists in the field. SANCARE offers Medical Information Departments an intuitive and ergonomic interface that promotes rapid adoption. All documents that make up the computerized patient record are available to the user. Each step of the coding process can be traced to external checks. Machine learning allows you to create powerful predictive models using large amounts of data. It also allows you to consider the notion of context which is not possible with rule engines or semantic analysis engines. It is possible to automate complex decision making processes and to detect weak signals that are often ignored by humans. The SANCARE software machine-learning engine is based upon a probabilistic approach. It uses a large number of examples to predict the correct codes without any indication.
  • 37
    Emly Labs Reviews
    Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction.
  • 38
    Kepler Reviews
    Kepler's Automated Data Science workflows make it easy to eliminate the need for programming and machine learning. You can quickly join and get data-driven insights that are unique to your company and your data. Our SaaS-based model allows you to receive continuous updates and additional Workflows from our AI and ML teams. With a platform that grows with you business, scale AI and accelerate time to value using the skills and team already within your company. Advanced AI and machine learning capabilities can solve complex business problems without the need to have any technical ML knowledge. You can leverage state-of the-art, end to end automation, a large library of AI algorithms, as well as the ability to quickly deploy machine-learning models. Organizations use Kepler to automate and augment critical business processes in order to increase productivity and agility.
  • 39
    FinetuneFast Reviews
    FinetuneFast allows you to fine-tune AI models, deploy them quickly and start making money online. Here are some of the features that make FinetuneFast unique: - Fine tune your ML models within days, not weeks - The ultimate ML boilerplate, including text-to-images, LLMs and more - Build your AI app to start earning online quickly - Pre-configured scripts for efficient training of models - Efficient data load pipelines for streamlined processing Hyperparameter optimization tools to improve model performance - Multi-GPU Support out of the Box for enhanced processing power - No-Code AI Model fine-tuning for simple customization - Model deployment with one-click for quick and hassle free deployment - Auto-scaling Infrastructure for seamless scaling of your models as they grow - API endpoint creation for easy integration with other system - Monitoring and logging for real-time performance monitoring
  • 40
    Daria Reviews
    Daria's advanced automated features enable users to quickly and easily create predictive models. This significantly reduces the time and effort required to build them. Eliminate technological and financial barriers to building AI systems from scratch for businesses. Automated machine learning for data professionals can streamline and speed up workflows, reducing the amount of iterative work required. An intuitive GUI for data science beginners gives you hands-on experience with machine learning. Daria offers various data transformation functions that allow you to quickly create multiple feature sets. Daria automatically searches through millions of combinations of algorithms, modeling techniques, and hyperparameters in order to find the best predictive model. Daria's RESTful API allows you to deploy predictive models directly into production.
  • 41
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 42
    C3 AI Suite Reviews
    Enterprise AI applications can be built, deployed, and operated. C3 AI®, Suite uses a unique model driven architecture to speed delivery and reduce the complexity of developing enterprise AI apps. The C3 AI model-driven architecture allows developers to create enterprise AI applications using conceptual models, rather than long code. This has significant benefits: AI applications and models can be used to optimize processes for every product or customer across all regions and businesses. You will see results in just 1-2 quarters. Also, you can quickly roll out new applications and capabilities. You can unlock sustained value - hundreds to billions of dollars annually - through lower costs, higher revenue and higher margins. C3.ai's unified platform, which offers data lineage as well as governance, ensures enterprise-wide governance for AI.
  • 43
    MindsDB Reviews
    Open-Source AI layer for databases. Machine Learning capabilities can be integrated directly into your data domain to increase efficiency and productivity. MindsDB makes it easy to create, train, and then test ML models. Then publish them as virtual AI tables into databases. Integrate seamlessly with all major databases. SQL queries can be used to manipulate ML models. You can increase model training speed using GPU without affecting the performance of your database. Learn how the ML model arrived at its conclusions and what factors affect prediction confidence. Visual tools that allow you to analyze model performance. SQL and Python queries that return explanation insights in a single code. You can use What-if analysis to determine confidence based upon different inputs. Automate the process for applying machine learning using the state-of the-art Lightwood AutoML library. Machine Learning can be used to create custom solutions in your preferred programming language.
  • 44
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 45
    KitOps Reviews
    KitOps, a packaging, versioning and sharing system, is designed for AI/ML project. It uses open standards, so it can be used with your existing AI/ML, DevOps, and development tools. It can also be stored in the enterprise container registry. It is the preferred solution of AI/ML platform engineers for packaging and versioning assets. KitOps creates an AI/ML ModelKit that includes everything you need to replicate it locally or deploy it in production. You can unpack a ModelKit selectively so that different team members can save storage space and time by only taking what they need to complete a task. ModelKits are easy to track, control and audit because they're immutable, signed and reside in your existing container registry.
  • 46
    AllegroGraph Reviews
    AllegroGraph is a revolutionary solution that allows infinite data integration. It uses a patented approach that unifies all data and siloed information into an Entity Event Knowledge Graph solution that supports massive big data analytics. AllegroGraph uses unique federated sharding capabilities to drive 360-degree insights, and enable complex reasoning across a distributed Knowledge Graph. AllegroGraph offers users an integrated version Gruff, a browser-based graph visualization tool that allows you to explore and discover connections within enterprise Knowledge Graphs. Franz's Knowledge Graph Solution offers both technology and services to help build industrial strength Entity Event Knowledge Graphs. It is based on the best-of-class products, tools, knowledge, skills, and experience.
  • 47
    Intelligent Artifacts Reviews
    A new category of AI. Most AI solutions today are designed using a mathematical and statistical lens. We took a different approach. Intelligent Artifacts' team has created a new type of AI based on information theory. It is a true AGI that eliminates the current shortcomings in machine intelligence. Our framework separates the intelligence layer from the data and application layers, allowing it to learn in real time and allowing it to make predictions down to the root cause. A truly integrated platform is required for AGI. Intelligent Artifacts will allow you to model information, not data. Predictions and decisions can be made across multiple domains without the need for rewriting code. Our dynamic platform and specialized AI consultants will provide you with a tailored solution that quickly provides deep insights and better outcomes from your data.
  • 48
    Launchable Reviews
    Even if you have the best developers, every test makes them slower. 80% of your software testing is pointless. The problem is that you don't know which 20%. We use your data to find the right 20% so you can ship faster. We offer shrink-wrapped predictive testing selection. This machine learning-based method is used by companies like Facebook and can be used by all companies. We support multiple languages, test runners and CI systems. Bring Git. Launchable uses machine-learning to analyze your source code and test failures. It doesn't rely solely on code syntax analysis. Launchable can easily add support for any file-based programming language. This allows us to scale across projects and teams with different languages and tools. We currently support Python, Ruby and Java, JavaScript and Go, as well as C++ and C++. We regularly add new languages to our support.
  • 49
    Torch Reviews
    Torch is a scientific computing platform that supports machine learning algorithms and has wide support for them. It is simple to use and efficient thanks to a fast scripting language, LuaJIT and an underlying C/CUDA implementation. Torch's goal is to allow you maximum flexibility and speed when building your scientific algorithms, while keeping it simple. Torch includes a large number of community-driven packages for machine learning, signal processing and parallel processing. It also builds on the Lua community. The core of Torch is the popular optimization and neural network libraries. These libraries are easy to use while allowing for maximum flexibility when implementing complex neural networks topologies. You can create arbitrary graphs of neuro networks and parallelize them over CPUs or GPUs in an efficient way.
  • 50
    Credo AI Reviews
    Standardize your AI governance efforts across different stakeholders, ensure regulatory readiness for your governance processes, and manage and measure your AI compliance and risks. You can transform your AI/ML projects from being managed by a variety of teams and processes into a centralized repository for trusted governance. Keep up-to-date on the latest regulations and standards by downloading AI Policy Packs. These packs meet all current and future regulations. Credo AI is an intelligence layer which sits on top your AI infrastructure and converts technical artifacts to actionable risk and compliance insights for product leaders and data scientists as well as governance teams. Credo AI is an intelligence layer which sits on top your technical and business infrastructure. It converts technical artifacts into compliance scores and risk scores.