Best Open R1 Alternatives in 2025

Find the top alternatives to Open R1 currently available. Compare ratings, reviews, pricing, and features of Open R1 alternatives in 2025. Slashdot lists the best Open R1 alternatives on the market that offer competing products that are similar to Open R1. Sort through Open R1 alternatives below to make the best choice for your needs

  • 1
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 2
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 3
    DeepScaleR Reviews
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 4
    Phi-4-mini-reasoning Reviews
    Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
  • 5
    Sky-T1 Reviews
    Sky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development.
  • 6
    DeepCoder Reviews
    DeepCoder, an entirely open-source model for code reasoning and generation, has been developed through a partnership between Agentica Project and Together AI. Leveraging the foundation of DeepSeek-R1-Distilled-Qwen-14B, it has undergone fine-tuning via distributed reinforcement learning, achieving a notable accuracy of 60.6% on LiveCodeBench, which marks an 8% enhancement over its predecessor. This level of performance rivals that of proprietary models like o3-mini (2025-01-031 Low) and o1, all while operating with only 14 billion parameters. The training process spanned 2.5 weeks on 32 H100 GPUs, utilizing a carefully curated dataset of approximately 24,000 coding challenges sourced from validated platforms, including TACO-Verified, PrimeIntellect SYNTHETIC-1, and submissions to LiveCodeBench. Each problem mandated a legitimate solution along with a minimum of five unit tests to guarantee reliability during reinforcement learning training. Furthermore, to effectively manage long-range context, DeepCoder incorporates strategies such as iterative context lengthening and overlong filtering, ensuring it remains adept at handling complex coding tasks. This innovative approach allows DeepCoder to maintain high standards of accuracy and reliability in its code generation capabilities.
  • 7
    OpenEuroLLM Reviews
    OpenEuroLLM represents a collaborative effort between prominent AI firms and research organizations across Europe, aimed at creating a suite of open-source foundational models to promote transparency in artificial intelligence within the continent. This initiative prioritizes openness by making data, documentation, training and testing code, and evaluation metrics readily available, thereby encouraging community participation. It is designed to comply with European Union regulations, with the goal of delivering efficient large language models that meet the specific standards of Europe. A significant aspect of the project is its commitment to linguistic and cultural diversity, ensuring that multilingual capabilities cover all official EU languages and potentially more. The initiative aspires to broaden access to foundational models that can be fine-tuned for a range of applications, enhance evaluation outcomes across different languages, and boost the availability of training datasets and benchmarks for researchers and developers alike. By sharing tools, methodologies, and intermediate results, transparency is upheld during the entire training process, fostering trust and collaboration within the AI community. Ultimately, OpenEuroLLM aims to pave the way for more inclusive and adaptable AI solutions that reflect the rich diversity of European languages and cultures.
  • 8
    Phi-4-reasoning-plus Reviews
    Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models.
  • 9
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 10
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.
  • 11
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 12
    Hunyuan T1 Reviews
    Tencent has unveiled the Hunyuan T1, its advanced AI model, which is now accessible to all users via the Tencent Yuanbao platform. This model is particularly adept at grasping various dimensions and potential logical connections, making it ideal for tackling intricate challenges. Users have the opportunity to explore a range of AI models available on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. Anticipation is building for the forthcoming official version of the Tencent Hunyuan T1 model, which will introduce external API access and additional services. Designed on the foundation of Tencent's Hunyuan large language model, Yuanbao stands out for its proficiency in Chinese language comprehension, logical reasoning, and effective task performance. It enhances user experience by providing AI-driven search, summaries, and writing tools, allowing for in-depth document analysis as well as engaging prompt-based dialogues. The platform's versatility is expected to attract a wide array of users seeking innovative solutions.
  • 13
    GigaChat 3 Ultra Reviews
    GigaChat 3 Ultra redefines open-source scale by delivering a 702B-parameter frontier model purpose-built for Russian and multilingual understanding. Designed with a modern MoE architecture, it achieves the reasoning strength of giant dense models while using only a fraction of active parameters per generation step. Its massive 14T-token training corpus includes natural human text, curated multilingual sources, extensive STEM materials, and billions of high-quality synthetic examples crafted to boost logic, math, and programming skills. This model is not a derivative or retrained foreign LLM—it is a ground-up build engineered to capture cultural nuance, linguistic accuracy, and reliable long-context performance. GigaChat 3 Ultra integrates seamlessly with open-source tooling like vLLM, sglang, DeepSeek-class architectures, and HuggingFace-based training stacks. It supports advanced capabilities including a code interpreter, improved chat template, memory system, contextual search reformulation, and 128K context windows. Benchmarking shows clear improvements over previous GigaChat generations and competitive results against global leaders in coding, reasoning, and cross-domain tasks. Overall, GigaChat 3 Ultra empowers teams to explore frontier-scale AI without sacrificing transparency, customizability, or ecosystem compatibility.
  • 14
    DeepSeek-V2 Reviews
    DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
  • 15
    Tülu 3 Reviews
    Tülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology.
  • 16
    DeepSeek-V3 Reviews
    DeepSeek-V3 represents a groundbreaking advancement in artificial intelligence, specifically engineered to excel in natural language comprehension, sophisticated reasoning, and decision-making processes. By utilizing highly advanced neural network designs, this model incorporates vast amounts of data alongside refined algorithms to address intricate problems across a wide array of fields, including research, development, business analytics, and automation. Prioritizing both scalability and operational efficiency, DeepSeek-V3 equips developers and organizations with innovative resources that can significantly expedite progress and lead to transformative results. Furthermore, its versatility makes it suitable for various applications, enhancing its value across industries.
  • 17
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 18
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 19
    Stable Beluga Reviews
    Stability AI, along with its CarperAI lab, is excited to unveil Stable Beluga 1 and its advanced successor, Stable Beluga 2, previously known as FreeWilly, both of which are robust new Large Language Models (LLMs) available for public use. These models exhibit remarkable reasoning capabilities across a wide range of benchmarks, showcasing their versatility and strength. Stable Beluga 1 is built on the original LLaMA 65B foundation model and has undergone meticulous fine-tuning with a novel synthetically-generated dataset utilizing Supervised Fine-Tune (SFT) in the conventional Alpaca format. In a similar vein, Stable Beluga 2 utilizes the LLaMA 2 70B foundation model, pushing the boundaries of performance in the industry. Their development marks a significant step forward in the evolution of open access AI technologies.
  • 20
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 21
    DeepSeek-V3.1-Terminus Reviews
    DeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints.
  • 22
    DeepSeek V3.1 Reviews
    DeepSeek V3.1 stands as a revolutionary open-weight large language model, boasting an impressive 685-billion parameters and an expansive 128,000-token context window, which allows it to analyze extensive documents akin to 400-page books in a single invocation. This model offers integrated functionalities for chatting, reasoning, and code creation, all within a cohesive hybrid architecture that harmonizes these diverse capabilities. Furthermore, V3.1 accommodates multiple tensor formats, granting developers the versatility to enhance performance across various hardware setups. Preliminary benchmark evaluations reveal strong results, including a remarkable 71.6% on the Aider coding benchmark, positioning it competitively with or even superior to systems such as Claude Opus 4, while achieving this at a significantly reduced cost. Released under an open-source license on Hugging Face with little publicity, DeepSeek V3.1 is set to revolutionize access to advanced AI technologies, potentially disrupting the landscape dominated by conventional proprietary models. Its innovative features and cost-effectiveness may attract a wide range of developers eager to leverage cutting-edge AI in their projects.
  • 23
    Smaug-72B Reviews
    Smaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology.
  • 24
    Hermes 3 Reviews
    Push the limits of individual alignment, artificial consciousness, open-source software, and decentralization through experimentation that larger corporations and governments often shy away from. Hermes 3 features sophisticated long-term context retention, the ability to engage in multi-turn conversations, and intricate roleplaying and internal monologue capabilities, alongside improved functionality for agentic function-calling. The design of this model emphasizes precise adherence to system prompts and instruction sets in a flexible way. By fine-tuning Llama 3.1 across various scales, including 8B, 70B, and 405B, and utilizing a dataset largely composed of synthetically generated inputs, Hermes 3 showcases performance that rivals and even surpasses Llama 3.1, while also unlocking greater potential in reasoning and creative tasks. This series of instructive and tool-utilizing models exhibits exceptional reasoning and imaginative skills, paving the way for innovative applications. Ultimately, Hermes 3 represents a significant advancement in the landscape of AI development.
  • 25
    NLP Cloud Reviews

    NLP Cloud

    NLP Cloud

    $29 per month
    We offer fast and precise AI models optimized for deployment in production environments. Our inference API is designed for high availability, utilizing cutting-edge NVIDIA GPUs to ensure optimal performance. We have curated a selection of top open-source natural language processing (NLP) models from the community, making them readily available for your use. You have the flexibility to fine-tune your own models, including GPT-J, or upload your proprietary models for seamless deployment in production. From your user-friendly dashboard, you can easily upload or train/fine-tune AI models, allowing you to integrate them into production immediately without the hassle of managing deployment factors such as memory usage, availability, or scalability. Moreover, you can upload an unlimited number of models and deploy them as needed, ensuring that you can continuously innovate and adapt to your evolving requirements. This provides a robust framework for leveraging AI technologies in your projects.
  • 26
    Vicuna Reviews
    Vicuna-13B is an open-source conversational agent developed through the fine-tuning of LLaMA, utilizing a dataset of user-shared dialogues gathered from ShareGPT. Initial assessments, with GPT-4 serving as an evaluator, indicate that Vicuna-13B achieves over 90% of the quality exhibited by OpenAI's ChatGPT and Google Bard, and it surpasses other models such as LLaMA and Stanford Alpaca in more than 90% of instances. The entire training process for Vicuna-13B incurs an estimated expenditure of approximately $300. Additionally, the source code and model weights, along with an interactive demonstration, are made available for public access under non-commercial terms, fostering a collaborative environment for further development and exploration. This openness encourages innovation and enables users to experiment with the model's capabilities in diverse applications.
  • 27
    Olmo 3 Reviews
    Olmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications.
  • 28
    DeepSeek Reviews
    DeepSeek stands out as a state-of-the-art AI assistant, leveraging the sophisticated DeepSeek-V3 model that boasts an impressive 600 billion parameters for superior performance. Created to rival leading AI systems globally, it delivers rapid responses alongside an extensive array of features aimed at enhancing daily tasks' efficiency and simplicity. Accessible on various platforms, including iOS, Android, and web, DeepSeek guarantees that users can connect from virtually anywhere. The application offers support for numerous languages and is consistently updated to enhance its capabilities, introduce new language options, and fix any issues. Praised for its smooth functionality and adaptability, DeepSeek has received enthusiastic reviews from a diverse user base around the globe. Furthermore, its commitment to user satisfaction and continuous improvement ensures that it remains at the forefront of AI technology.
  • 29
    kluster.ai Reviews

    kluster.ai

    kluster.ai

    $0.15per input
    Kluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects.
  • 30
    R1 1776 Reviews
    Perplexity AI has released R1 1776 as an open-source large language model (LLM), built on the DeepSeek R1 framework, with the goal of improving transparency and encouraging collaborative efforts in the field of AI development. With this release, researchers and developers can explore the model's architecture and underlying code, providing them the opportunity to enhance and tailor it for diverse use cases. By making R1 1776 available to the public, Perplexity AI seeks to drive innovation while upholding ethical standards in the AI sector. This initiative not only empowers the community but also fosters a culture of shared knowledge and responsibility among AI practitioners.
  • 31
    Orpheus TTS Reviews
    Canopy Labs has unveiled Orpheus, an innovative suite of advanced speech large language models (LLMs) aimed at achieving human-like speech generation capabilities. Utilizing the Llama-3 architecture, these models have been trained on an extensive dataset comprising over 100,000 hours of English speech, allowing them to generate speech that exhibits natural intonation, emotional depth, and rhythmic flow that outperforms existing high-end closed-source alternatives. Orpheus also features zero-shot voice cloning, enabling users to mimic voices without any need for prior fine-tuning, and provides easy-to-use tags for controlling emotion and intonation. The models are engineered for low latency, achieving approximately 200ms streaming latency for real-time usage, which can be further decreased to around 100ms when utilizing input streaming. Canopy Labs has made available both pre-trained and fine-tuned models with 3 billion parameters under the flexible Apache 2.0 license, with future intentions to offer smaller models with 1 billion, 400 million, and 150 million parameters to cater to devices with limited resources. This strategic move is expected to broaden accessibility and application potential across various platforms and use cases.
  • 32
    Mistral Large 3 Reviews
    Mistral Large 3 pushes open-source AI into frontier territory with a massive sparse MoE architecture that activates 41B parameters per token while maintaining a highly efficient 675B total parameter design. It sets a new performance standard by combining long-context reasoning, multilingual fluency across 40+ languages, and robust multimodal comprehension within a single unified model. Trained end-to-end on thousands of NVIDIA H200 GPUs, it reaches parity with top closed-source instruction models while remaining fully accessible under the Apache 2.0 license. Developers benefit from optimized deployments through partnerships with NVIDIA, Red Hat, and vLLM, enabling smooth inference on A100, H100, and Blackwell-class systems. The model ships in both base and instruct variants, with a reasoning-enhanced version on the way for even deeper analytical capabilities. Beyond general intelligence, Mistral Large 3 is engineered for enterprise customization, allowing organizations to refine the model on internal datasets or domain-specific tasks. Its efficient token generation and powerful multimodal stack make it ideal for coding, document analysis, knowledge workflows, agentic systems, and multilingual communications. With Mistral Large 3, organizations can finally deploy frontier-class intelligence with full transparency, flexibility, and control.
  • 33
    Microsoft Foundry Models Reviews
    Microsoft Foundry Models centralizes more than 11,000 leading AI models, offering enterprises a single place to explore, compare, fine-tune, and deploy AI for any use case. It includes top-performing models from OpenAI, Anthropic, Cohere, Meta, Mistral AI, DeepSeek, Black Forest Labs, and Microsoft’s own Azure OpenAI offerings. Teams can search by task—such as reasoning, generation, multimodal, or domain-specific workloads—and instantly test models in a built-in playground. Foundry Models simplifies customization with ready-to-use fine-tuning pipelines that require no infrastructure setup. Developers can upload internal datasets to benchmark and evaluate model accuracy, ensuring the right fit for production environments. With seamless deployment into managed instances, organizations get automatic scaling, traffic management, and secure hosting. The platform is backed by Azure’s enterprise-grade security and over 100 compliance certifications, supporting regulated industries and global operations. By integrating discovery, testing, tuning, and deployment, Foundry Models dramatically shortens AI development cycles and speeds time to value.
  • 34
    Llama 3.1 Reviews
    Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
  • 35
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 36
    Nebius Token Factory Reviews
    Nebius Token Factory is an advanced AI inference platform that enables the production of both open-source and proprietary AI models without the need for manual infrastructure oversight. It provides enterprise-level inference endpoints that ensure consistent performance, automatic scaling of throughput, and quick response times, even when faced with high request traffic. With a remarkable 99.9% uptime, it accommodates both unlimited and customized traffic patterns according to specific workload requirements, facilitating a seamless shift from testing to worldwide implementation. Supporting a diverse array of open-source models, including Llama, Qwen, DeepSeek, GPT-OSS, Flux, and many more, Nebius Token Factory allows teams to host and refine models via an intuitive API or dashboard interface. Users have the flexibility to upload LoRA adapters or fully fine-tuned versions directly, while still benefiting from the same enterprise-grade performance assurances for their custom models. This level of support ensures that organizations can confidently leverage AI technology to meet their evolving needs.
  • 37
    Giga ML Reviews
    We are excited to announce the launch of our X1 large series of models. The most robust model from Giga ML is now accessible for both pre-training and fine-tuning in an on-premises environment. Thanks to our compatibility with Open AI, existing integrations with tools like long chain, llama-index, and others function effortlessly. You can also proceed with pre-training LLMs using specialized data sources such as industry-specific documents or company files. The landscape of large language models (LLMs) is rapidly evolving, creating incredible opportunities for advancements in natural language processing across multiple fields. Despite this growth, several significant challenges persist in the industry. At Giga ML, we are thrilled to introduce the X1 Large 32k model, an innovative on-premise LLM solution designed specifically to tackle these pressing challenges, ensuring that organizations can harness the full potential of LLMs effectively. With this launch, we aim to empower businesses to elevate their language processing capabilities.
  • 38
    QwQ-32B Reviews
    The QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence.
  • 39
    LongLLaMA Reviews
    This repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing.
  • 40
    Janus-Pro-7B Reviews
    Janus-Pro-7B is a groundbreaking open-source multimodal AI model developed by DeepSeek, expertly crafted to both comprehend and create content involving text, images, and videos. Its distinctive autoregressive architecture incorporates dedicated pathways for visual encoding, which enhances its ability to tackle a wide array of tasks, including text-to-image generation and intricate visual analysis. Demonstrating superior performance against rivals such as DALL-E 3 and Stable Diffusion across multiple benchmarks, it boasts scalability with variants ranging from 1 billion to 7 billion parameters. Released under the MIT License, Janus-Pro-7B is readily accessible for use in both academic and commercial contexts, marking a substantial advancement in AI technology. Furthermore, this model can be utilized seamlessly on popular operating systems such as Linux, MacOS, and Windows via Docker, broadening its reach and usability in various applications.
  • 41
    Aya Reviews
    Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape.
  • 42
    Kimi K2 Reviews
    Kimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing.
  • 43
    Llama 3.2 Reviews
    The latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains.
  • 44
    DeepSeek Coder Reviews
    DeepSeek Coder is an innovative software solution poised to transform the realm of data analysis and programming. By harnessing state-of-the-art machine learning techniques and natural language processing, it allows users to effortlessly incorporate data querying, analysis, and visualization into their daily tasks. The user-friendly interface caters to both beginners and seasoned developers, making the writing, testing, and optimization of code a straightforward process. Among its impressive features are real-time syntax validation, smart code suggestions, and thorough debugging capabilities, all aimed at enhancing productivity in coding. Furthermore, DeepSeek Coder’s proficiency in deciphering intricate data sets enables users to extract valuable insights and develop advanced data-centric applications with confidence. Ultimately, its combination of powerful tools and ease of use positions DeepSeek Coder as an essential asset for anyone engaged in data-driven projects.
  • 45
    PygmalionAI Reviews
    PygmalionAI is a vibrant community focused on the development of open-source initiatives utilizing EleutherAI's GPT-J 6B and Meta's LLaMA models. Essentially, Pygmalion specializes in crafting AI tailored for engaging conversations and roleplaying. The actively maintained Pygmalion AI model currently features the 7B variant, derived from Meta AI's LLaMA model. Requiring a mere 18GB (or even less) of VRAM, Pygmalion demonstrates superior chat functionality compared to significantly larger language models, all while utilizing relatively limited resources. Our meticulously assembled dataset, rich in high-quality roleplaying content, guarantees that your AI companion will be the perfect partner for roleplaying scenarios. Both the model weights and the training code are entirely open-source, allowing you the freedom to modify and redistribute them for any purpose you desire. Generally, language models, such as Pygmalion, operate on GPUs, as they require swift memory access and substantial processing power to generate coherent text efficiently. As a result, users can expect a smooth and responsive interaction experience when employing Pygmalion's capabilities.