Evertune
Evertune is the Generative Engine Optimization (GEO) platform that helps brands improve visibility in AI search across ChatGPT, AI Overview, AI Mode, Gemini, Claude, Perplexity, Meta, DeepSeek and Copilot.
We're building the first marketing platform for AI search as a channel. We show enterprise brands exactly where they stand when customers discover them through AI — then give them the precise playbook to show up stronger. This is Generative Engine Optimization, also known as AI SEO.
We analyze over one million AI responses monthly per brand. Using applied AI and data science at scale, we give brands statistical confidence in our actionable insights. We decode what gets brands mentioned more and ranked higher, provide reliable brand monitoring and competitive intelligence, then deliver actionable content strategies that move the needle. Our AI SEO and AI search engine optimization tools are built for how LLMs actually work.
Why Leading Enterprise Marketers Choose Evertune:
Data Science at Scale 1M+ monthly custom prompts per brand across all major LLMs for statistically confident brand monitoring and competitive intelligence.
Actionable Strategy, Not Just Dashboards: Specific content, messaging and distribution tactics that increase your AI search visibility.
Dedicated Customer Success: Hands-on training and strategic guidance to turn insights into improved performance in AI search.
Built for AI search as a channel: Organic visibility today, paid advertising and commerce tomorrow.
Proven Leadership: Founded by The Trade Desk veterans who pioneered data-driven digital advertising. Backed by data scientists from OpenAI, Meta and other AI leaders.
Learn more
Gemini
Gemini is Google’s intelligent AI platform built to support productivity, creativity, and learning across work, school, and everyday life. It allows users to ask questions, generate text, images, and videos, and explore ideas using conversational AI powered by Gemini 3. By integrating directly with Google Search, Gemini provides grounded answers and supports detailed follow-up discussions on complex topics. The platform includes advanced tools like Deep Research, which condenses hours of online research into structured reports in minutes. Gemini also enables real-time collaboration and spoken brainstorming through Gemini Live. Users can connect Gemini to Gmail, Google Docs, Calendar, Maps, and other Google services to complete tasks across multiple apps at once. Custom AI experts called Gems allow users to save instructions and tailor Gemini for specific roles or workflows. Gemini supports large file analysis with a long context window, making it capable of reviewing books, reports, and large codebases. Flexible subscription tiers offer different levels of access to models, credits, and creative tools. Gemini is available on web and mobile, making it accessible wherever users need intelligent assistance.
Learn more
DeepScaleR
DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
Learn more
Phi-4-mini-reasoning
Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
Learn more