Best NVIDIA NeMo Alternatives in 2024
Find the top alternatives to NVIDIA NeMo currently available. Compare ratings, reviews, pricing, and features of NVIDIA NeMo alternatives in 2024. Slashdot lists the best NVIDIA NeMo alternatives on the market that offer competing products that are similar to NVIDIA NeMo. Sort through NVIDIA NeMo alternatives below to make the best choice for your needs
-
1
Megatron-Turing
NVIDIA
Megatron-Turing Natural Language Generation Model (MT-NLG) is the largest and most powerful monolithic English language model. It has 530 billion parameters. This 105-layer transformer-based MTNLG improves on the previous state-of-the art models in zero, one, and few shot settings. It is unmatched in its accuracy across a wide range of natural language tasks, including Completion prediction and Reading comprehension. NVIDIA has announced an Early Access Program for its managed API service in MT-NLG Mode. This program will allow customers to experiment with, employ and apply a large language models on downstream language tasks. -
2
NVIDIA NeMo Megatron
NVIDIA
NVIDIA NeMo megatron is an end to-end framework that can be used to train and deploy LLMs with billions or trillions of parameters. NVIDIA NeMo Megatron is part of the NVIDIAAI platform and offers an efficient, cost-effective, and cost-effective containerized approach to building and deploying LLMs. It is designed for enterprise application development and builds upon the most advanced technologies of NVIDIA research. It provides an end-to–end workflow for automated distributed processing, training large-scale customized GPT-3 and T5 models, and deploying models to infer at scale. The validation of converged recipes that allow for training and inference is a key to unlocking the power and potential of LLMs. The hyperparameter tool makes it easy to customize models. It automatically searches for optimal hyperparameter configurations, performance, and training/inference for any given distributed GPU cluster configuration. -
3
Mistral NeMo
Mistral AI
FreeMistral NeMo, our new best small model. A state-of the-art 12B with 128k context and released under Apache 2.0 license. Mistral NeMo, a 12B-model built in collaboration with NVIDIA, is available. Mistral NeMo has a large context of up to 128k Tokens. Its reasoning, world-knowledge, and coding precision are among the best in its size category. Mistral NeMo, which relies on a standard architecture, is easy to use. It can be used as a replacement for any system that uses Mistral 7B. We have released Apache 2.0 licensed pre-trained checkpoints and instruction-tuned base checkpoints to encourage adoption by researchers and enterprises. Mistral NeMo has been trained with quantization awareness to enable FP8 inferences without performance loss. The model was designed for global applications that are multilingual. It is trained in function calling, and has a large contextual window. It is better than Mistral 7B at following instructions, reasoning and handling multi-turn conversation. -
4
GPT-NeoX
EleutherAI
FreeA model parallel autoregressive transformator implementation on GPUs based on the DeepSpeed Library. This repository contains EleutherAI’s library for training large language models on GPUs. Our current framework is based upon NVIDIA's Megatron Language Model, and has been enhanced with techniques from DeepSpeed, as well as some novel improvements. This repo is intended to be a central and accessible place for techniques to train large-scale autoregressive models and to accelerate research into large scale training. -
5
NVIDIA AI Foundations
NVIDIA
Generative AI has a profound impact on virtually every industry. It opens up new opportunities for creative workers and knowledge to solve the world's most pressing problems. NVIDIA is empowering generative AI with a powerful suite of cloud services, pretrained foundation models, cutting-edge frameworks and optimized inference engines. NVIDIA AI Foundations is an array of cloud services that enable customization across use cases in areas like text (NVIDIA NeMo™, NVIDIA Picasso), or biology (NVIDIA BIONeMo™. Enjoy the full potential of NeMo, Picasso and BioNeMo cloud-based services powered by NVIDIA DGX™ Cloud, an AI supercomputer. Marketing copy, storyline creation and global translation in many different languages. News, email, meeting minutes and information synthesis. -
6
BioNeMo
NVIDIA
BioNeMo, an AI-powered cloud service for drug discovery and framework, is built on NVIDIA NeMo Megatron. It is used to train and deploy large biomolecular Transformer AI models at supercomputing scale. The service provides pre-trained large language models (LLMs), native support for common file types for proteins, DNA, and chemistry, as well as data loaders for SMILES molecular structures and FASTA amino acid and nucleotide sequencings. You can also download the BioNeMo framework to run on your own infrastructure. ESM-1, which is based on Meta AI’s state-of the-art ESM-1b and ProtT5 respectively, are transformer-based protein-language models that can be used for learning embeddings for tasks such as property prediction and protein structure. BioNeMo will offer OpenFold, a deep-learning model for 3D structure prediction and novel protein sequences. -
7
Pixtral 12B
Mistral AI
FreePixtral 12B, a multimodal AI model pioneered by Mistral AI and designed to process and understand both text and images data seamlessly, is a groundbreaking AI model. This model represents a significant advance in the integration of data types. It allows for more intuitive interaction and enhanced content creation abilities. Pixtral 12B, which is based on Mistral's NeMo 12B Text Model, incorporates an additional Vision Adapter that adds 400 million parameters. This allows it to handle visual inputs of up to 1024x1024 pixels. This model is capable of a wide range of applications from image analysis to answering visual content questions. Its versatility is demonstrated in real-world scenarios. Pixtral 12B is a powerful tool for developers, as it not only has a large context of 128k tokens, but also uses innovative techniques such as GeLU activation and RoPE 2D for its vision components. -
8
NVIDIA Nemotron
NVIDIA
NVIDIA Nemotron, a family open-source models created by NVIDIA is designed to generate synthetic language data for commercial applications. The Nemotron-4 model 340B is an important release by NVIDIA. It offers developers a powerful tool for generating high-quality data, and filtering it based upon various attributes, using a reward system. -
9
OLMo 2
Ai2
OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities. -
10
CodeQwen
QwenLM
FreeCodeQwen, developed by the Qwen Team, Alibaba Cloud, is the code version. It is a transformer based decoder only language model that has been pre-trained with a large number of codes. A series of benchmarks shows that the code generation is strong and that it performs well. Supporting long context generation and understanding with a context length of 64K tokens. CodeQwen is a 92-language coding language that provides excellent performance for text-to SQL, bug fixes, and more. CodeQwen chat is as simple as writing a few lines of code using transformers. We build the tokenizer and model using pre-trained methods and use the generate method for chatting. The chat template is provided by the tokenizer. Following our previous practice, we apply the ChatML Template for chat models. The model will complete the code snippets in accordance with the prompts without any additional formatting. -
11
Gemini Flash
Google
Gemini Flash, a large language model from Google, is specifically designed for low-latency, high-speed language processing tasks. Gemini Flash, part of Google DeepMind’s Gemini series is designed to handle large-scale applications and provide real-time answers. It's ideal for interactive AI experiences such as virtual assistants, live chat, and customer support. Gemini Flash is built on sophisticated neural structures that ensure contextual relevance, coherence, and precision. Google has built in rigorous ethical frameworks as well as responsible AI practices to Gemini Flash. It also equipped it with guardrails that manage and mitigate biased outcomes, ensuring alignment with Google's standards of safe and inclusive AI. Google's Gemini Flash empowers businesses and developers with intelligent, responsive language tools that can keep up with fast-paced environments. -
12
Alpa
Alpa
FreeAlpa aims automate large-scale distributed training. Alpa was originally developed by people at UC Berkeley's Sky Lab. Alpa's advanced techniques were described in a paper published by OSDI'2022. Google is adding new members to the Alpa community. A language model is a probabilistic distribution of probability over a sequence of words. It uses all the words it has seen to predict the next word. It is useful in a variety AI applications, including the auto-completion of your email or chatbot service. You can find more information on the language model Wikipedia page. GPT-3 is a large language model with 175 billion parameters that uses deep learning to produce text that looks human-like. GPT-3 was described by many researchers and news articles as "one the most important and interesting AI systems ever created." GPT-3 is being used as a backbone for the latest NLP research. -
13
YandexGPT
Yandex
Use generative language models for improving and optimizing your web services and applications. Get a consolidated result of textual data, whether it is information from chats at work, user reviews or other types. YandexGPT can help summarize and interpret information. Improve the quality and style of your text to speed up the creation process. Create templates for newsletters, product description for online stores, and other applications. Create a chatbot to help your customer service. Teach the bot how to answer common and complex questions. Use the API to automate processes and integrate the service into your applications. -
14
Phi-3
Microsoft
Small language models (SLMs), a powerful family of small language models, with low cost and low-latency performance. Maximize AI capabilities and lower resource usage, while ensuring cost-effective generative AI implementations across your applications. Accelerate response time in real-time interaction, autonomous systems, low latency apps, and other critical scenarios. Phi-3 can be run in the cloud, on the edge or on the device. This allows for greater flexibility in deployment and operation. Phi-3 models have been developed according to Microsoft AI principles, including accountability, transparency and fairness, reliability, safety and security, privacy, and inclusivity. Operate efficiently in offline environments, where data privacy or connectivity are limited. Expanded context window allows for more accurate, contextually relevant and coherent outputs. Deploy at edge to deliver faster response. -
15
EXAONE
LG
EXAONE, a large-scale language model developed by LG AI Research, aims to nurture "Expert AI" across multiple domains. The Expert AI alliance was formed by leading companies from various fields in order to advance EXAONE's capabilities. Partner companies in the alliance will act as mentors and provide EXAONE with skills, knowledge, data, and other resources to help it gain expertise in relevant fields. EXAONE is akin to an advanced college student who has taken elective courses in general. It requires intensive training to become a specialist in a specific area. LG AI Research has already demonstrated EXAONE’s abilities in real-world applications such as Tilda AI human artist, which debuted at New York Fashion Week. AI applications have also been developed to summarize customer service conversations, and extract information from complex academic documents. -
16
Sarvam AI
Sarvam AI
We are developing large language models that are efficient for India's diverse cultural diversity and enabling GenAI applications with bespoke enterprise models. We are building a platform for enterprise-grade apps that allows you to develop and evaluate them. We believe that open-source can accelerate AI innovation. We will be contributing open-source datasets and models, and leading efforts for large data curation projects in the public-good space. We are a dynamic team of AI experts, combining expertise in research, product design, engineering and business operations. Our diverse backgrounds are united by a commitment to excellence in science, and creating societal impact. We create an environment in which tackling complex tech problems is not only a job but a passion. -
17
ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
-
18
PanGu-Σ
Huawei
The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks. -
19
OpenGPT-X
OpenGPT-X
FreeOpenGPT is a German initiative that focuses on developing large AI languages models tailored to European requirements, with an emphasis on versatility, trustworthiness and multilingual capabilities. It also emphasizes open-source accessibility. The project brings together partners to cover the whole generative AI value-chain, from scalable GPU-based infrastructure to data for training large language model to model design, practical applications, and prototypes and proofs-of concept. OpenGPT-X aims at advancing cutting-edge research, with a focus on business applications. This will accelerate the adoption of generative AI within the German economy. The project also stresses responsible AI development to ensure that the models are reliable and aligned with European values and laws. The project provides resources, such as the LLM Workbook and a three part reference guide with examples and resources to help users better understand the key features and characteristics of large AI language model. -
20
StarCoder
BigCode
FreeStarCoderBase and StarCoder are Large Language Models (Code LLMs), trained on permissively-licensed data from GitHub. This includes data from 80+ programming language, Git commits and issues, Jupyter Notebooks, and Git commits. We trained a 15B-parameter model for 1 trillion tokens, similar to LLaMA. We refined the StarCoderBase for 35B Python tokens. The result is a new model we call StarCoder. StarCoderBase is a model that outperforms other open Code LLMs in popular programming benchmarks. It also matches or exceeds closed models like code-cushman001 from OpenAI, the original Codex model which powered early versions GitHub Copilot. StarCoder models are able to process more input with a context length over 8,000 tokens than any other open LLM. This allows for a variety of interesting applications. By prompting the StarCoder model with a series dialogues, we allowed them to act like a technical assistant. -
21
Codestral
Mistral AI
FreeWe are proud to introduce Codestral, the first code model we have ever created. Codestral is a generative AI model that is open-weight and specifically designed for code generation. It allows developers to interact and write code using a shared API endpoint for instructions and completion. It can be used for advanced AI applications by software developers as it is able to master both code and English. Codestral has been trained on a large dataset of 80+ languages, including some of the most popular, such as Python and Java. It also includes C, C++ JavaScript, Bash, C, C++. It also performs well with more specific ones, such as Swift and Fortran. Codestral's broad language base allows it to assist developers in a variety of coding environments and projects. -
22
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096. -
23
Smaug-72B
Abacus
FreeSmaug 72B is an open-source large-language model (LLM), which is known for its key features. High Performance: It is currently ranked first on the Hugging face Open LLM leaderboard. This model has surpassed models such as GPT-3.5 across a range of benchmarks. This means that it excels in tasks such as understanding, responding to and generating text similar to human speech. Open Source: Smaug-72B, unlike many other advanced LLMs is available to anyone for free use and modification, fostering collaboration, innovation, and creativity in the AI community. Focus on Math and Reasoning: It excels at handling mathematical and reasoning tasks. This is attributed to the unique fine-tuning technologies developed by Abacus, the creators Smaug 72B. Based on Qwen 72B: This is a finely tuned version of another powerful LLM, called Qwen 72B, released by Alibaba. It further improves its capabilities. Smaug-72B is a significant advance in open-source AI. -
24
OPT
Meta
The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model. -
25
Inflection AI
Inflection AI
FreeInflection AI, a leading artificial intelligence research and technology company, focuses on developing advanced AI systems that interact with humans more naturally and intuitively. The company was founded in 2022 by entrepreneurs like Mustafa Suleyman (one of the cofounders of DeepMind) and Reid Hoffman (co-founder of LinkedIn). Its mission is to make powerful AI accessible and aligned to human values. Inflection AI is a company that specializes in creating large-scale language systems to enhance human-AI interaction. It aims to transform industries from customer service to productivity by designing AI systems that are intelligent, responsive and ethical. The company's focus is on safety, transparency and user control to ensure that their innovations are positive for society while addressing the potential risks associated with AI. -
26
JinaChat
Jina AI
$9.99 per monthExperience JinaChat - a LLM service designed for professionals. JinaChat is a multimodal chat service that goes beyond text and includes images. Enjoy our free short interactions below 100 tokens. Our API allows developers to build complex applications by leveraging long conversation histories. JinaChat is the future of LLM, with multimodal conversations that are long-memory and affordable. Modern LLM applications are often based on long prompts or large memory, which can lead to high costs if the same prompts are sent repeatedly to the server. JinaChat API solves this issue by allowing you to carry forward previous conversations, without having to resend the entire prompt. This is a great way to save both time and money when developing complex applications such as AutoGPT. -
27
GradientJ
GradientJ
GradientJ gives you everything you need to create large language models in minutes, and manage them for life. Save versions of prompts and compare them with benchmark examples to discover and maintain the best prompts. Chaining prompts and knowledge databases into complex APIs allows you to orchestrate and manage complex apps. Integrating your proprietary data with your models will improve their accuracy. -
28
Qwen2
Alibaba
FreeQwen2 is a large language model developed by Qwen Team, Alibaba Cloud. Qwen2 is an extensive series of large language model developed by the Qwen Team at Alibaba Cloud. It includes both base models and instruction-tuned versions, with parameters ranging from 0.5 to 72 billion. It also features dense models and a Mixture of Experts model. The Qwen2 Series is designed to surpass previous open-weight models including its predecessor Qwen1.5 and to compete with proprietary model across a wide spectrum of benchmarks, such as language understanding, generation and multilingual capabilities. -
29
Jurassic-1
AI21 Labs
Jurassic-1 comes in two sizes. The Jumbo version is the most advanced language model, with 178B parameters. It was released to developers for general use. AI21 Studio, currently in open beta allows anyone to sign up for the service and immediately begin querying Jurassic-1 with our API and interactive website environment. AI21 Labs' mission is to fundamentally change the way humans read and compose by introducing machines as partners in thought. We can only achieve this if we work together. Since the Mesozoic Era, or 2017, we have been researching language models. Jurassic-1 is based on this research and is the first generation we are making available to wide use. -
30
Code Llama
Meta
FreeCode Llama, a large-language model (LLM), can generate code using text prompts. Code Llama, the most advanced publicly available LLM for code tasks, has the potential to improve workflows for developers and reduce the barrier for those learning to code. Code Llama can be used to improve productivity and educate programmers to create more robust, well documented software. Code Llama, a state-of the-art LLM, is capable of generating both code, and natural languages about code, based on both code and natural-language prompts. Code Llama can be used for free in research and commercial purposes. Code Llama is a new model that is built on Llama 2. It is available in 3 models: Code Llama is the foundational model of code; Codel Llama is a Python-specific language. Code Llama-Instruct is a finely tuned natural language instruction interpreter. -
31
LUIS
Microsoft
Language Understanding (LUIS), a machine learning-based service that builds natural language into apps and bots. Rapidly create custom models that are enterprise-ready and can be continuously improved. Natural language can be added to your apps. LUIS is a language model that interprets conversations to find valuable information. It extracts information from sentences (entities) and interprets user intentions (goals). LUIS is seamlessly integrated with the Azure Bot Service, making creating sophisticated bots easy. You can quickly create and deploy a solution faster by combining powerful developer tools with pre-built apps and entity dictionary, such as Music, Calendar, and Devices. The collective knowledge of the internet is used to create dictionaries. This allows your model to identify valuable information from user conversations. Active learning is used for continuous improvement of the quality of the models. -
32
Palmyra LLM
Writer
$18 per monthPalmyra is an enterprise-ready suite of Large Language Models. These models are excellent at tasks like image analysis, question answering, and supporting over 30 languages. They can be fine-tuned for industries such as healthcare and finance. Palmyra models are notable for their top rankings in benchmarks such as Stanford HELM and PubMedQA. Palmyra Fin is the first model that passed the CFA Level III examination. Writer protects client data by not using it to train or modify models. They have a zero-data retention policy. Palmyra includes specialized models, such as Palmyra X 004, which has tool-calling abilities; Palmyra Med for healthcare; Palmyra Fin for finance; and Palmyra Vision for advanced image and video processing. These models are available via Writer's full stack generative AI platform which integrates graph based Retrieval augmented Generation (RAG). -
33
With just a few lines, you can integrate natural language understanding and generation into the product. The Cohere API allows you to access models that can read billions upon billions of pages and learn the meaning, sentiment, intent, and intent of every word we use. You can use the Cohere API for human-like text. Simply fill in a prompt or complete blanks. You can create code, write copy, summarize text, and much more. Calculate the likelihood of text, and retrieve representations from your model. You can filter text using the likelihood API based on selected criteria or categories. You can create your own downstream models for a variety of domain-specific natural languages tasks by using representations. The Cohere API is able to compute the similarity of pieces of text and make categorical predictions based on the likelihood of different text options. The model can see ideas through multiple lenses so it can identify abstract similarities between concepts as distinct from DNA and computers.
-
34
Gemma 2
Google
Gemini models are a family of light-open, state-of-the art models that was created using the same research and technology as Gemini models. These models include comprehensive security measures, and help to ensure responsible and reliable AI through selected data sets. Gemma models have exceptional comparative results, even surpassing some larger open models, in their 2B and 7B sizes. Keras 3.0 offers seamless compatibility with JAX TensorFlow PyTorch and JAX. Gemma 2 has been redesigned to deliver unmatched performance and efficiency. It is optimized for inference on a variety of hardware. The Gemma models are available in a variety of models that can be customized to meet your specific needs. The Gemma models consist of large text-to text lightweight language models that have a decoder and are trained on a large set of text, code, or mathematical content. -
35
Qwen-7B
Alibaba
FreeQwen-7B, also known as Qwen-7B, is the 7B-parameter variant of the large language models series Qwen. Tongyi Qianwen, proposed by Alibaba Cloud. Qwen-7B, a Transformer-based language model, is pretrained using a large volume data, such as web texts, books, code, etc. Qwen-7B is also used to train Qwen-7B Chat, an AI assistant that uses large models and alignment techniques. The Qwen-7B features include: Pre-trained with high quality data. We have pretrained Qwen-7B using a large-scale, high-quality dataset that we constructed ourselves. The dataset contains over 2.2 trillion tokens. The dataset contains plain texts and codes and covers a wide range domains including general domain data as well as professional domain data. Strong performance. We outperform our competitors in a series benchmark datasets that evaluate natural language understanding, mathematics and coding. And more. -
36
PaLM
Google
PaLM API allows you to easily and safely build on top our best language models. We are currently making an efficient model, both in terms of size, and capabilities, available today. We will soon add more sizes. MakerSuite is an intuitive tool that allows you to quickly prototype ideas. Over time, it will include features for prompt engineering and synthetic data generation. It also supports custom-model tuning. All of this is supported by robust safety tools. Only a few developers have access to the PaLM API and MakerSuite in private preview today. Stay tuned for our waitlist. -
37
Teuken 7B
OpenGPT-X
FreeTeuken-7B, a multilingual open source language model, was developed under the OpenGPT-X project. It is specifically designed to accommodate Europe's diverse linguistic landscape. It was trained on a dataset that included over 50% non-English text, covering all 24 official European Union languages, to ensure robust performance. Teuken-7B's custom multilingual tokenizer is a key innovation. It has been optimized for European languages and enhances training efficiency. The model comes in two versions: Teuken-7B Base, a pre-trained foundational model, and Teuken-7B Instruct, a model that has been tuned to better follow user prompts. Hugging Face makes both versions available, promoting transparency and cooperation within the AI community. The development of Teuken-7B demonstrates a commitment to create AI models that reflect Europe’s diversity. -
38
Chinchilla
Google DeepMind
Chinchilla has a large language. Chinchilla has the same compute budget of Gopher, but 70B more parameters and 4x as much data. Chinchilla consistently and significantly outperforms Gopher 280B, GPT-3 175B, Jurassic-1 178B, and Megatron-Turing (530B) in a wide range of downstream evaluation tasks. Chinchilla also uses less compute to perform fine-tuning, inference and other tasks. This makes it easier for downstream users to use. Chinchilla reaches a high-level average accuracy of 67.5% for the MMLU benchmark. This is a greater than 7% improvement compared to Gopher. -
39
Command R+
Cohere
FreeCommand R+, Cohere's latest large language model, is optimized for conversational interactions and tasks with a long context. It is designed to be extremely performant and enable companies to move from proof-of-concept into production. We recommend Command R+ when working with workflows that rely on complex RAG functionality or multi-step tool usage (agents). Command R is better suited for retrieval augmented creation (RAG) tasks and single-step tool usage, or applications where cost is a key consideration. -
40
Qwen
Alibaba
FreeQwen LLM is a family of large-language models (LLMs), developed by Damo Academy, an Alibaba Cloud subsidiary. These models are trained using a large dataset of text and codes, allowing them the ability to understand and generate text that is human-like, translate languages, create different types of creative content and answer your question in an informative manner. Here are some of the key features of Qwen LLMs. Variety of sizes: Qwen's series includes sizes ranging from 1.8 billion parameters to 72 billion, offering options that meet different needs and performance levels. Open source: Certain versions of Qwen have open-source code, which is available to anyone for use and modification. Qwen is multilingual and can translate multiple languages including English, Chinese and Japanese. Qwen models are capable of a wide range of tasks, including text summarization and code generation, as well as generation and translation. -
41
Marco-o1
AIDC-AI
FreeMarco-o1 is an advanced AI model that is designed for high-performance problem solving and natural language processing. It is designed to deliver precise, contextually rich answers by combining deep language understanding with a streamlined architectural design for speed and efficiency. Marco-o1 is a versatile AI system that excels at a wide range of tasks, including conversational AI. It also excels at content creation, technical assistance, and decision-making. It adapts seamlessly to the needs of diverse users. Marco-o1 is a cutting edge solution for individuals and organisations seeking intelligent, adaptive and scalable AI tools. It focuses on intuitive interactions, reliability and ethical AI principles. MCTS allows for the exploration of multiple reasoning pathways using confidence scores derived by softmax-applied logging probabilities of the top k alternative tokens. This guides the model to optimal solution. -
42
LLaVA
LLaVA
FreeLLaVA is a multimodal model that combines a Vicuna language model with a vision encoder to facilitate comprehensive visual-language understanding. LLaVA's chat capabilities are impressive, emulating multimodal functionality of models such as GPT-4. LLaVA 1.5 has achieved the best performance in 11 benchmarks using publicly available data. It completed training on a single 8A100 node in about one day, beating methods that rely upon billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been crucial in training LLaVA for a wide range of visual and linguistic tasks. -
43
IBM Granite
IBM
FreeIBM® Granite™ is an AI family that was designed from scratch for business applications. It helps to ensure trust and scalability of AI-driven apps. Granite models are open source and available today. We want to make AI accessible to as many developers as we can. We have made the core Granite Code, Time Series models, Language and GeoSpatial available on Hugging Face, under a permissive Apache 2.0 licence that allows for broad commercial use. Granite models are all trained using carefully curated data. The data used to train them is transparent at a level that is unmatched in the industry. We have also made the tools that we use available to ensure that the data is of high quality and meets the standards required by enterprise-grade applications. -
44
Amazon Titan
Amazon
Amazon Titan models are exclusive to Amazon Bedrock. They incorporate Amazon's 25-year experience in AI and machine learning innovation across its business. Amazon Titan foundation models (FMs), via a fully-managed API, provide customers with an array of high-performing text, image, and multimodal models. Amazon Titan models were created by AWS, and pre-trained on large datasets. They are powerful, general purpose models that support a wide range of use cases while also supporting responsible AI. You can use them as-is or customize them privately with your own data. Amazon Titan Text Premier is an advanced model in the Amazon Titan Text family that delivers superior performance for a variety of enterprise applications. This model is optimized to integrate with Agents and knowledge bases for Amazon Bedrock. It's an ideal option for creating interactive generative AI apps. -
45
Hermes 3
Nous Research
FreeHermes 3 contains advanced long-term context retention and multi-turn conversation capabilities, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Hermes 3 has advanced long-term contextual retention, multi-turn conversation capabilities, complex roleplaying, internal monologue, and enhanced agentic functions-calling. Our training data encourages the model in a very aggressive way to follow the system prompts and instructions exactly and in a highly adaptive manner. Hermes 3 was developed by fine-tuning Llama 3.0 8B, 70B and 405B and training with a dataset primarily containing synthetic responses. The model has a performance that is comparable to Llama 3.1, but with deeper reasoning and creative abilities. Hermes 3 is an instruct and tool-use model series with strong reasoning and creativity abilities. -
46
Llama 3.2
Meta
FreeThere are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings. -
47
Qwen2.5
QwenLM
FreeQwen2.5, an advanced multimodal AI system, is designed to provide highly accurate responses that are context-aware across a variety of applications. It builds on its predecessors' capabilities, integrating cutting edge natural language understanding, enhanced reasoning, creativity and multimodal processing. Qwen2.5 is able to analyze and generate text as well as interpret images and interact with complex data in real-time. It is highly adaptable and excels at personalized assistance, data analytics, creative content creation, and academic research. This makes it a versatile tool that can be used by professionals and everyday users. Its user-centric approach emphasizes transparency, efficiency and alignment with ethical AI. -
48
GPT-4o mini
OpenAI
A small model with superior textual Intelligence and multimodal reasoning. GPT-4o Mini's low cost and low latency enable a wide range of tasks, including applications that chain or paralelize multiple model calls (e.g. calling multiple APIs), send a large amount of context to the models (e.g. full code base or history of conversations), or interact with clients through real-time, fast text responses (e.g. customer support chatbots). GPT-4o Mini supports text and vision today in the API. In the future, it will support text, image and video inputs and outputs. The model supports up to 16K outputs tokens per request and has knowledge until October 2023. It has a context of 128K tokens. The improved tokenizer shared by GPT-4o makes it easier to handle non-English text. -
49
Mixtral 8x22B
Mistral AI
FreeMixtral 8x22B is our latest open model. It sets new standards for performance and efficiency in the AI community. It is a sparse Mixture-of-Experts model (SMoE), which uses only 39B active variables out of 141B. This offers unparalleled cost efficiency in relation to its size. It is fluently bilingual in English, French Italian, German and Spanish. It has strong math and coding skills. It is natively able to call functions; this, along with the constrained-output mode implemented on La Plateforme, enables application development at scale and modernization of tech stacks. Its 64K context window allows for precise information retrieval from large documents. We build models with unmatched cost-efficiency for their respective sizes. This allows us to deliver the best performance-tocost ratio among models provided by the Community. Mixtral 8x22B continues our open model family. Its sparse patterns of activation make it faster than any 70B model. -
50
Llama 3.1
Meta
FreeOpen source AI model that you can fine-tune and distill anywhere. Our latest instruction-tuned models are available in 8B 70B and 405B version. Our open ecosystem allows you to build faster using a variety of product offerings that are differentiated and support your use cases. Choose between real-time or batch inference. Download model weights for further cost-per-token optimization. Adapt to your application, improve using synthetic data, and deploy on-prem. Use Llama components and extend the Llama model using RAG and zero shot tools to build agentic behavior. Use 405B high-quality data to improve specialized model for specific use cases.