Best Medical LLM Alternatives in 2025
Find the top alternatives to Medical LLM currently available. Compare ratings, reviews, pricing, and features of Medical LLM alternatives in 2025. Slashdot lists the best Medical LLM alternatives on the market that offer competing products that are similar to Medical LLM. Sort through Medical LLM alternatives below to make the best choice for your needs
-
1
Defense Llama
Scale AI
Scale AI is pleased to announce Defense Llama. This Large Language Model (LLM), built on Meta's Llama 3, is customized and fine-tuned for support of American national security missions. Defense Llama is available only in controlled U.S. Government environments within Scale Donovan. It empowers our servicemen and national security professionals by enabling them to apply the power generative AI for their unique use cases such as planning military operations or intelligence operations, and understanding adversary weaknesses. Defense Llama has been trained using a vast dataset that includes military doctrine, international human rights law, and relevant policy designed to align with Department of Defense (DoD), guidelines for armed conflicts, as well as DoD's Ethical Principles of Artificial Intelligence. This allows the model to respond with accurate, meaningful and relevant responses. Scale is proud that it can help U.S. national-security personnel use generative AI for defense in a safe and secure manner. -
2
Grok 3 DeepSearch is a revolutionary AI model that enhances reasoning by incorporating deep search mechanisms, enabling the AI to delve into complex problems and explore various possibilities. As an AI agent, it can engage in extended reasoning, continuously testing and refining solutions, making it perfect for high-stakes tasks that require detailed problem-solving and critical thinking. Whether solving intricate math problems, generating code, or conducting thorough academic research, Grok 3 DeepSearch provides an elevated approach by leveraging real-time exploration and error correction. This model represents a significant leap forward in AI's ability to handle nuanced challenges in fields ranging from mathematics to software development and beyond.
-
3
Phi-2
Microsoft
Phi-2 is a 2.7-billion-parameter language-model that shows outstanding reasoning and language-understanding capabilities. It represents the state-of-the art performance among language-base models with less than thirteen billion parameters. Phi-2 can match or even outperform models 25x larger on complex benchmarks, thanks to innovations in model scaling. Phi-2's compact size makes it an ideal playground for researchers. It can be used for exploring mechanistic interpretationability, safety improvements or fine-tuning experiments on a variety tasks. We have included Phi-2 in the Azure AI Studio catalog to encourage research and development of language models. -
4
Med-PaLM 2
Google Cloud
Through scientific rigor and human insight, healthcare breakthroughs can change the world, bringing hope to humanity. We believe that AI can help in this area, through collaboration between researchers, healthcare organisations, and the wider ecosystem. Today, we are sharing exciting progress in these initiatives with the announcement that Google's large language model (LLM) for medical applications, called Med PaLM 2, will be available to a limited number of customers. In the coming weeks, it will be available to a small group of Google Cloud users for limited testing. We will explore use cases, share feedback, and investigate safe, responsible and meaningful ways to utilize this technology. Med-PaLM 2, which harnesses Google's LLMs aligned with the medical domain, is able to answer medical questions more accurately and safely. Med-PaLM 2 is the first LLM that has performed at an "expert" level on the MedQA dataset consisting of US Medical Licensing Examination-style questions. -
5
BLOOM
BigScience
BLOOM (autoregressive large language model) is trained to continue text using a prompt on large amounts of text data. It uses industrial-scale computational resources. It can produce coherent text in 46 languages and 13 programming language, which is almost impossible to distinguish from text written by humans. BLOOM can be trained to perform text tasks that it hasn’t been explicitly trained for by casting them as text generation jobs. -
6
Claude is an artificial intelligence language model that can generate text with human-like processing. Anthropic is an AI safety company and research firm that focuses on building reliable, interpretable and steerable AI systems. While large, general systems can provide significant benefits, they can also be unpredictable, unreliable and opaque. Our goal is to make progress in these areas. We are currently focusing on research to achieve these goals. However, we see many opportunities for our work in the future to create value both commercially and for the public good.
-
7
Qwen2.5
Alibaba
FreeQwen2.5, an advanced multimodal AI system, is designed to provide highly accurate responses that are context-aware across a variety of applications. It builds on its predecessors' capabilities, integrating cutting edge natural language understanding, enhanced reasoning, creativity and multimodal processing. Qwen2.5 is able to analyze and generate text as well as interpret images and interact with complex data in real-time. It is highly adaptable and excels at personalized assistance, data analytics, creative content creation, and academic research. This makes it a versatile tool that can be used by professionals and everyday users. Its user-centric approach emphasizes transparency, efficiency and alignment with ethical AI. -
8
LTM-1
Magic AI
Magic's LTM-1 provides context windows 50x larger than transformers. Magic has trained a Large Language Model that can take in huge amounts of context to generate suggestions. Magic, our coding assistant can now see all of your code. AI models can refer to more factual and explicit information with larger context windows. They can also reference their own actions history. This research will hopefully improve reliability and coherence. -
9
OpenGPT-X
OpenGPT-X
FreeOpenGPT is a German initiative that focuses on developing large AI languages models tailored to European requirements, with an emphasis on versatility, trustworthiness and multilingual capabilities. It also emphasizes open-source accessibility. The project brings together partners to cover the whole generative AI value-chain, from scalable GPU-based infrastructure to data for training large language model to model design, practical applications, and prototypes and proofs-of concept. OpenGPT-X aims at advancing cutting-edge research, with a focus on business applications. This will accelerate the adoption of generative AI within the German economy. The project also stresses responsible AI development to ensure that the models are reliable and aligned with European values and laws. The project provides resources, such as the LLM Workbook and a three part reference guide with examples and resources to help users better understand the key features and characteristics of large AI language model. -
10
Llama
Meta
Llama (Large Language Model meta AI) is a state of the art foundational large language model that was created to aid researchers in this subfield. Llama allows researchers to use smaller, more efficient models to study these models. This further democratizes access to this rapidly-changing field. Because it takes far less computing power and resources than large language models, such as Llama, to test new approaches, validate other's work, and explore new uses, training smaller foundation models like Llama can be a desirable option. Foundation models are trained on large amounts of unlabeled data. This makes them perfect for fine-tuning for many tasks. We make Llama available in several sizes (7B-13B, 33B and 65B parameters), and also share a Llama card that explains how the model was built in line with our Responsible AI practices. -
11
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM is an initiative that brings together Europe's top AI companies and research institutes to create a series open-source foundation models in Europe for transparent AI. The project focuses on transparency by sharing data, documentation and training, testing, and evaluation metrics. This encourages community involvement. It ensures compliance to EU regulations and aims to provide large language models that are aligned with European standards. The focus is on linguistic diversity and cultural diversity. Multilingual capabilities are extended to include all EU official language and beyond. The initiative aims to improve access to foundational models that can be fine-tuned for various applications, expand the evaluation results in multiple language, and increase availability of training datasets. Transparency throughout the training process is maintained by sharing tools and methodologies, as well as intermediate results. -
12
Gemini 2.0
Google
Free 1 RatingGemini 2.0, an advanced AI model developed by Google is designed to offer groundbreaking capabilities for natural language understanding, reasoning and multimodal interaction. Gemini 2.0 builds on the success of Gemini's predecessor by integrating large language processing and enhanced problem-solving, decision-making, and interpretation abilities. This allows it to interpret and produce human-like responses more accurately and nuanced. Gemini 2.0, unlike traditional AI models, is trained to handle a variety of data types at once, including text, code, images, etc. This makes it a versatile tool that can be used in research, education, business and creative industries. Its core improvements are better contextual understanding, reduced biased, and a more effective architecture that ensures quicker, more reliable results. Gemini 2.0 is positioned to be a major step in the evolution AI, pushing the limits of human-computer interactions. -
13
GPT-4V (Vision)
OpenAI
1 RatingGPT-4 with Vision (GPT-4V), our latest capability, allows users to instruct GPT-4 on how to analyze images input by the user. Some researchers and developers of artificial intelligence consider the incorporation of additional modalities, such as image inputs, into large language models. Multimodal LLMs can be used to expand the impact of existing language-only systems by providing them with novel interfaces, capabilities and experiences. In this system card we analyze the GPT-4V safety properties. We have built on the safety work for GPT-4V and here we go deeper into the evaluations and preparations for image inputs. -
14
EXAONE
LG
EXAONE, a large-scale language model developed by LG AI Research, aims to nurture "Expert AI" across multiple domains. The Expert AI alliance was formed by leading companies from various fields in order to advance EXAONE's capabilities. Partner companies in the alliance will act as mentors and provide EXAONE with skills, knowledge, data, and other resources to help it gain expertise in relevant fields. EXAONE is akin to an advanced college student who has taken elective courses in general. It requires intensive training to become a specialist in a specific area. LG AI Research has already demonstrated EXAONE’s abilities in real-world applications such as Tilda AI human artist, which debuted at New York Fashion Week. AI applications have also been developed to summarize customer service conversations, and extract information from complex academic documents. -
15
Adept
Adept
Adept is a ML product and research lab that builds general intelligence by enabling computers and humans to work together creatively. Designed and specifically trained to take actions on computers in response your natural language commands. ACT-1 is the first step in a foundation model which can be used with any software tool, API or website. Adept is creating a completely new way to accomplish tasks. It takes your goals in plain language and turns them into action on the software that you use every single day. We believe AI systems should be designed with users in mind -- where machines and people work together to find new solutions, make better decisions, and give us more time to do the things we love. -
16
Inflection AI
Inflection AI
FreeInflection AI, a leading artificial intelligence research and technology company, focuses on developing advanced AI systems that interact with humans more naturally and intuitively. The company was founded in 2022 by entrepreneurs like Mustafa Suleyman (one of the cofounders of DeepMind) and Reid Hoffman (co-founder of LinkedIn). Its mission is to make powerful AI accessible and aligned to human values. Inflection AI is a company that specializes in creating large-scale language systems to enhance human-AI interaction. It aims to transform industries from customer service to productivity by designing AI systems that are intelligent, responsive and ethical. The company's focus is on safety, transparency and user control to ensure that their innovations are positive for society while addressing the potential risks associated with AI. -
17
Claude Pro is a large language model that can handle complex tasks with a friendly and accessible demeanor. It is trained on high-quality, extensive data and excels at understanding contexts, interpreting subtleties, and producing well structured, coherent responses to a variety of topics. Claude Pro is able to create detailed reports, write creative content, summarize long documents, and assist with coding tasks by leveraging its robust reasoning capabilities and refined knowledge base. Its adaptive algorithms constantly improve its ability learn from feedback. This ensures that its output is accurate, reliable and helpful. Whether Claude Pro is serving professionals looking for expert support or individuals seeking quick, informative answers - it delivers a versatile, productive conversational experience.
-
18
Gemma 2
Google
Gemini models are a family of light-open, state-of-the art models that was created using the same research and technology as Gemini models. These models include comprehensive security measures, and help to ensure responsible and reliable AI through selected data sets. Gemma models have exceptional comparative results, even surpassing some larger open models, in their 2B and 7B sizes. Keras 3.0 offers seamless compatibility with JAX TensorFlow PyTorch and JAX. Gemma 2 has been redesigned to deliver unmatched performance and efficiency. It is optimized for inference on a variety of hardware. The Gemma models are available in a variety of models that can be customized to meet your specific needs. The Gemma models consist of large text-to text lightweight language models that have a decoder and are trained on a large set of text, code, or mathematical content. -
19
Palmyra LLM
Writer
$18 per monthPalmyra is an enterprise-ready suite of Large Language Models. These models are excellent at tasks like image analysis, question answering, and supporting over 30 languages. They can be fine-tuned for industries such as healthcare and finance. Palmyra models are notable for their top rankings in benchmarks such as Stanford HELM and PubMedQA. Palmyra Fin is the first model that passed the CFA Level III examination. Writer protects client data by not using it to train or modify models. They have a zero-data retention policy. Palmyra includes specialized models, such as Palmyra X 004, which has tool-calling abilities; Palmyra Med for healthcare; Palmyra Fin for finance; and Palmyra Vision for advanced image and video processing. These models are available via Writer's full stack generative AI platform which integrates graph based Retrieval augmented Generation (RAG). -
20
Hippocratic AI
Hippocratic AI
Hippocratic AI, the new SOTA model, is outperforming GPT-4 in 105 of 114 healthcare certifications and exams. Hippocratic AI outperformed GPT-4 in 105 of 114 tests, outperforming by a margin greater than five percent on 74 certifications and by a larger margin on 43 certifications. Most language models are pre-trained on the common crawling of the Internet. This may include incorrect or misleading information. Hippocratic AI, unlike these LLMs is heavily investing in legally acquiring evidenced-based healthcare content. We use healthcare professionals to train the model and validate its readiness for deployment. This is called RLHF-HP. Hippocratic AI won't release the model until many of these licensed professionals have deemed it safe. -
21
GPT-NeoX
EleutherAI
FreeA model parallel autoregressive transformator implementation on GPUs based on the DeepSpeed Library. This repository contains EleutherAI’s library for training large language models on GPUs. Our current framework is based upon NVIDIA's Megatron Language Model, and has been enhanced with techniques from DeepSpeed, as well as some novel improvements. This repo is intended to be a central and accessible place for techniques to train large-scale autoregressive models and to accelerate research into large scale training. -
22
Healthcare Data Analytics
Inspirata
Our healthcare-specific Natural Language Processing and AI Engine stores more than 70% of healthcare data in clinical documents, reports and patient charts, clinician notes, discharge letters, and patient charts. This allows us to identify the concepts, attributes, and context that are needed to deliver business insight, optimize billing, identify and rank patient risks, compute quality metrics, collect sentiment and outcome data, and provide business insights. -
23
Gopher
DeepMind
Language and its role as a means of demonstrating and facilitating understanding - or intelligence, as it is sometimes called - are fundamental to being human. It allows people to express themselves, build memories, and communicate ideas. These are the foundational components of social intelligence. Our teams at DeepMind are interested in the language processing and communication aspects, both for artificial agents and humans. As part of an broader portfolio of AI Research, we believe that the development and study more powerful language models, systems that predict and create text, have tremendous potential to build advanced AI systems. These systems can be used safely and effectively to summarise and provide expert advice, and follow instructions using natural language. Research is needed to determine the potential risks and benefits of language models before they can be developed. -
24
Claude 4
Anthropic
FreeClaude 4 is the upcoming evolution of Anthropic’s AI language model, expected to introduce significant improvements in reasoning, efficiency, and multimodal capabilities. While official details are yet to be confirmed, industry speculation suggests it may include enhanced contextual understanding, faster response times, and potentially support for image and video analysis. Designed to push the boundaries of AI-powered assistance, Claude 4 aims to serve industries such as finance, healthcare, technology, and customer service with more intelligent and adaptive interactions. Though no official release date has been announced, it is anticipated to launch in early 2025, marking another major step forward in AI-driven communication and problem-solving. -
25
OLMo 2
Ai2
OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities. -
26
DeepSeek-V3
DeepSeek
Free 1 RatingDeepSeek-V3 is an advanced AI model built to excel in natural language comprehension, sophisticated reasoning, and decision-making across a wide range of applications. Harnessing innovative neural architectures and vast datasets, it offers exceptional capabilities for addressing complex challenges in fields like research, development, business analytics, and automation. Designed for both scalability and efficiency, DeepSeek-V3 empowers developers and organizations to drive innovation and unlock new possibilities with state-of-the-art AI solutions. -
27
OPT
Meta
The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model. -
28
GPT-J
EleutherAI
FreeGPT-J, a cutting edge language model developed by EleutherAI, is a leading-edge language model. GPT-J's performance is comparable to OpenAI's GPT-3 model on a variety of zero-shot tasks. GPT-J, in particular, has shown that it can surpass GPT-3 at tasks relating to code generation. The latest version of this language model is GPT-J-6B and is built on a linguistic data set called The Pile. This dataset is publically available and contains 825 gibibytes worth of language data organized into 22 subsets. GPT-J has some similarities with ChatGPT. However, GPTJ is not intended to be a chatbot. Its primary function is to predict texts. Databricks made a major development in March 2023 when they introduced Dolly, an Apache-licensed model that follows instructions. -
29
Stable LM
Stability AI
FreeStableLM: Stability AI language models StableLM builds upon our experience with open-sourcing previous language models in collaboration with EleutherAI. This nonprofit research hub. These models include GPTJ, GPTNeoX and the Pythia Suite, which were all trained on The Pile dataset. Cerebras GPT and Dolly-2 are two recent open-source models that continue to build upon these efforts. StableLM was trained on a new dataset that is three times bigger than The Pile and contains 1.5 trillion tokens. We will provide more details about the dataset at a later date. StableLM's richness allows it to perform well in conversational and coding challenges, despite the small size of its dataset (3-7 billion parameters, compared to GPT-3's 175 billion). The development of Stable LM 3B broadens the range of applications that are viable on the edge or on home PCs. This means that individuals and companies can now develop cutting-edge technologies with strong conversational capabilities – like creative writing assistance – while keeping costs low and performance high. -
30
Sparrow
DeepMind
Sparrow is a research model that serves as a proof of concept. It was created with the goal to train dialogue agents to be more helpful and correct. Sparrow helps us understand how to train agents to be more helpful and safer, and ultimately to help create safer and more useful artificial intelligence (AGI). Sparrow is currently not available for public use. Because it is difficult to determine what makes a conversation successful, training conversational AI can be a challenging problem. We use reinforcement learning (RL) to address this problem. This is a form that uses people's feedback and the preference feedback of study participants to train a model about how useful an answer is. We show participants multiple models of the same question, and ask them which one they prefer. -
31
Code Llama
Meta
FreeCode Llama, a large-language model (LLM), can generate code using text prompts. Code Llama, the most advanced publicly available LLM for code tasks, has the potential to improve workflows for developers and reduce the barrier for those learning to code. Code Llama can be used to improve productivity and educate programmers to create more robust, well documented software. Code Llama, a state-of the-art LLM, is capable of generating both code, and natural languages about code, based on both code and natural-language prompts. Code Llama can be used for free in research and commercial purposes. Code Llama is a new model that is built on Llama 2. It is available in 3 models: Code Llama is the foundational model of code; Codel Llama is a Python-specific language. Code Llama-Instruct is a finely tuned natural language instruction interpreter. -
32
Phi-4
Microsoft
Phi-4 is the latest small language model (SLM), with 14B parameters. It excels in complex reasoning, including math, as well as conventional language processing. Phi-4, the latest member of the Phi family of SLMs, demonstrates what is possible as we continue exploring the boundaries of SLMs. Phi-4 will be available in Hugging Face and Azure AI Foundry, under a Microsoft Research License Agreement. Phi-4 is superior to comparable and larger models in math-related reasoning thanks to improvements throughout the process, including the use high-quality synthetic data, curation of organic data of high quality, and innovations post-training. Phi-4 continues pushing the boundaries of size vs. quality. -
33
Codestral Mamba
Mistral AI
FreeCodestral Mamba is a Mamba2 model that specializes in code generation. It is available under the Apache 2.0 license. Codestral Mamba represents another step in our efforts to study and provide architectures. We hope that it will open up new perspectives in architecture research. Mamba models have the advantage of linear inference of time and the theoretical ability of modeling sequences of unlimited length. Users can interact with the model in a more extensive way with rapid responses, regardless of the input length. This efficiency is particularly relevant for code productivity use-cases. We trained this model with advanced reasoning and code capabilities, enabling the model to perform at par with SOTA Transformer-based models. -
34
ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
-
35
Gemini Advanced
Google
$19.99 per month 1 RatingGemini Advanced is an AI model that delivers unmatched performance in natural language generation, understanding, and problem solving across diverse domains. It features a revolutionary neural structure that delivers exceptional accuracy, nuanced context comprehension, and deep reason capabilities. Gemini Advanced can handle complex and multifaceted tasks. From creating detailed technical content to writing code, to providing strategic insights and conducting in-depth analysis of data, Gemini Advanced is designed to handle them all. Its adaptability, scalability and flexibility make it an ideal solution for both enterprise-level and individual applications. Gemini Advanced is a new standard in AI-powered solutions for intelligence, innovation and reliability. Google One also includes 2 TB of storage and access to Gemini, Docs and more. Gemini Advanced offers access to Gemini Deep Research. You can perform real-time and in-depth research on virtually any subject. -
36
CodeQwen
Alibaba
FreeCodeQwen, developed by the Qwen Team, Alibaba Cloud, is the code version. It is a transformer based decoder only language model that has been pre-trained with a large number of codes. A series of benchmarks shows that the code generation is strong and that it performs well. Supporting long context generation and understanding with a context length of 64K tokens. CodeQwen is a 92-language coding language that provides excellent performance for text-to SQL, bug fixes, and more. CodeQwen chat is as simple as writing a few lines of code using transformers. We build the tokenizer and model using pre-trained methods and use the generate method for chatting. The chat template is provided by the tokenizer. Following our previous practice, we apply the ChatML Template for chat models. The model will complete the code snippets in accordance with the prompts without any additional formatting. -
37
Yi-Large
01.AI
$0.19 per 1M input tokenYi-Large, a proprietary large language engine developed by 01.AI with a 32k context size and input and output costs of $2 per million tokens. It is distinguished by its advanced capabilities in common-sense reasoning and multilingual support. It performs on par with leading models such as GPT-4 and Claude3 when it comes to various benchmarks. Yi-Large was designed to perform tasks that require complex inference, language understanding, and prediction. It is suitable for applications such as knowledge search, data classifying, and creating chatbots. Its architecture is built on a decoder only transformer with enhancements like pre-normalization, Group Query attention, and has been trained using a large, high-quality, multilingual dataset. The model's versatility, cost-efficiency and global deployment potential make it a strong competitor in the AI market. -
38
PanGu-Σ
Huawei
The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks. -
39
Llama 3.3
Meta
FreeLlama 3.3, the latest in the Llama language model series, was developed to push the limits of AI-powered communication and understanding. Llama 3.3, with its enhanced contextual reasoning, improved generation of language, and advanced fine tuning capabilities, is designed to deliver highly accurate responses across diverse applications. This version has a larger dataset for training, refined algorithms to improve nuanced understanding, and reduced biases as compared to previous versions. Llama 3.3 excels at tasks such as multilingual communication, technical explanations, creative writing and natural language understanding. It is an indispensable tool for researchers, developers and businesses. Its modular architecture enables customization in specialized domains and ensures performance at scale. -
40
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensYou can use advanced language models and coding to solve a variety of problems. To build cutting-edge applications, leverage large-scale, generative AI models that have deep understandings of code and language to allow for new reasoning and comprehension. These coding and language models can be applied to a variety use cases, including writing assistance, code generation, reasoning over data, and code generation. Access enterprise-grade Azure security and detect and mitigate harmful use. Access generative models that have been pretrained with trillions upon trillions of words. You can use them to create new scenarios, including code, reasoning, inferencing and comprehension. A simple REST API allows you to customize generative models with labeled information for your particular scenario. To improve the accuracy of your outputs, fine-tune the hyperparameters of your model. You can use the API's few-shot learning capability for more relevant results and to provide examples. -
41
DeepSeek Coder
DeepSeek
Free 1 RatingDeepSeek Coder, a cutting edge software tool, is designed to revolutionize data analysis and coding. It allows users to seamlessly integrate data analysis, visualization, and querying into their workflow by leveraging advanced machine-learning algorithms and natural language processing. DeepSeek Coder's intuitive interface allows both novice and experienced coders to efficiently write, optimize, and test code. Its powerful set of features include real-time code completion, intelligent syntax checking, and comprehensive debugging, all designed to streamline coding. DeepSeek Coder can also understand and interpret complex data, allowing users to create sophisticated data-driven apps with ease. -
42
GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
-
43
NVIDIA NeMo
NVIDIA
NVIDIA NeMoLLM is a service that allows you to quickly customize and use large language models that have been trained on multiple frameworks. Developers can use NeMo LLM to deploy enterprise AI applications on both public and private clouds. They can also experiment with Megatron 530B, one of the most powerful language models, via the cloud API or the LLM service. You can choose from a variety of NVIDIA models or community-developed models to best suit your AI applications. You can get better answers in minutes to hours by using prompt learning techniques and providing context for specific use cases. Use the NeMo LLM Service and the cloud API to harness the power of NVIDIA megatron 530B, the largest language model, or NVIDIA Megatron 535B. Use models for drug discovery in the NVIDIA BioNeMo framework and the cloud API. -
44
Octave TTS
Hume AI
$3 per monthHume AI introduced Octave, a text-to-speech engine that uses large language models to understand and interpret context. Unlike traditional TTS systems that merely read texts, Octave delivers lines with nuanced emotion based on content. Users can create different AI voices using descriptive prompts such as "a medieval peasant who is sarcastic." This allows for customized voice generation that aligns to specific character traits or situations. Octave also allows users to customize the voice's emotional delivery and style by using natural language commands. For example, "sound more enthusiastic", "whisper fearfully", or "sound more excited" can be used to fine-tune output. -
45
Mistral Saba
Mistral AI
FreeMistral Saba, a 24-billion parameter model, is trained on carefully curated datasets gathered from the Middle East and South Asia. The model is more accurate and relevant than models five times larger, while being faster and cheaper. It can also be used as a solid base for training highly specific regional adaptations. Mistral Saba can be installed locally in the security premises of customers using an API. The model is lightweight, can be deployed with a single GPU system and responds at speeds exceeding 150 tokens per seconds. Mistral Saba is a powerful tool for South Indian languages, such as Tamil, and Arabic. It also supports many Indian languages. This capability increases its versatility for multi-regional use. -
46
ESMFold
Meta
FreeESMFold demonstrates how AI can provide new tools for understanding the natural world. It is similar to the microscope which allowed us to see the world at a tiny scale and gave us a new understanding of the world. AI can help us see biology in a different way and understand the vastness of nature. AI research has largely focused on helping computers understand the world in a similar way to humans. The language of proteins is a language that is beyond human comprehension. Even the most powerful computational tools have failed to understand it. AI has the potential of opening up this language to our comprehension. AI can be studied in new domains like biology to gain a better understanding of artificial intelligence. Our research reveals connections across domains. Large language models that are behind machine translation, natural speech understanding, speech recognition, image generation, and machine translation are also able learn deep information about biology. -
47
RoBERTa
Meta
FreeRoBERTa is based on BERT's language-masking strategy. The system learns to predict hidden sections of text in unannotated language examples. RoBERTa was implemented in PyTorch and modifies key hyperparameters of BERT. This includes removing BERT’s next-sentence-pretraining objective and training with larger mini-batches. This allows RoBERTa improve on the masked-language modeling objective, which is comparable to BERT. It also leads to improved downstream task performance. We are also exploring the possibility of training RoBERTa with a lot more data than BERT and for a longer time. We used both existing unannotated NLP data sets as well as CC-News which was a new set of public news articles. -
48
GPT-5
OpenAI
$0.0200 per 1000 tokensGPT-5 is OpenAI's Generative Pretrained Transformer. It is a large-language model (LLM), which is still in development. LLMs have been trained to work with massive amounts of text and can generate realistic and coherent texts, translate languages, create different types of creative content and answer your question in a way that is informative. It's still not available to the public. OpenAI has not announced a release schedule, but some believe it could launch in 2024. It's expected that GPT-5 will be even more powerful. GPT-4 has already proven to be impressive. It is capable of writing creative content, translating languages and generating text of human-quality. GPT-5 will be expected to improve these abilities, with improved reasoning, factual accuracy and ability to follow directions. -
49
Hunyuan T1
Tencent
Tencent Yuanbao, an AI assistant, is a product developed by Tencent. It integrates AI search, reading and creation, as well as various unique features, to provide users with convenient, personalized and efficient intelligent services. Yuanbao is based on Tencent's Hunyuan language model and excels at Chinese language understanding, logical reason, and task execution. It provides AI-based search and writing capabilities. Users can analyze documents and engage with prompt-based interaction. Image recognition is supported, allowing users send images to be analyzed and interpreted. Yuanbao can be used on desktop, mobile, and web platforms. It's designed to improve work and study efficiency. The desktop version includes the same core functionality as the mobile and web versions, but also adds new features such as word search, translation and screenshot-based queries. -
50
Teuken 7B
OpenGPT-X
FreeTeuken-7B, a multilingual open source language model, was developed under the OpenGPT-X project. It is specifically designed to accommodate Europe's diverse linguistic landscape. It was trained on a dataset that included over 50% non-English text, covering all 24 official European Union languages, to ensure robust performance. Teuken-7B's custom multilingual tokenizer is a key innovation. It has been optimized for European languages and enhances training efficiency. The model comes in two versions: Teuken-7B Base, a pre-trained foundational model, and Teuken-7B Instruct, a model that has been tuned to better follow user prompts. Hugging Face makes both versions available, promoting transparency and cooperation within the AI community. The development of Teuken-7B demonstrates a commitment to create AI models that reflect Europe’s diversity.