Best MPT-7B Alternatives in 2024

Find the top alternatives to MPT-7B currently available. Compare ratings, reviews, pricing, and features of MPT-7B alternatives in 2024. Slashdot lists the best MPT-7B alternatives on the market that offer competing products that are similar to MPT-7B. Sort through MPT-7B alternatives below to make the best choice for your needs

  • 1
    Dolly Reviews
    Dolly is an inexpensive LLM that demonstrates a surprising amount of the capabilities of ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly uses an open source model with 6 billion parameters from EleutherAI, which is modified to include new capabilities like brainstorming and text creation that were not present in the original.
  • 2
    Falcon-40B Reviews

    Falcon-40B

    Technology Innovation Institute (TII)

    Free
    Falcon-40B is a 40B parameter causal decoder model, built by TII. It was trained on 1,000B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-40B Falcon-40B is the best open source model available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. This is a raw model that should be finetuned to fit most uses. If you're looking for a model that can take generic instructions in chat format, we suggest Falcon-40B Instruct.
  • 3
    OpenLLaMA Reviews
    OpenLLaMA, a permissively-licensed open source reproduction of Meta AI’s LLaMA 7B, is trained on the RedPajama data set. Our model weights are a drop-in replacement for LLaMA7B in existing implementations. We also offer a smaller 3B version of the LLaMA Model.
  • 4
    Alpaca Reviews

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. These models are now used by many users, and some even for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. It is vital that the academic community engages in order to make maximum progress towards addressing these pressing issues. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI's text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta's LLaMA 7B model.
  • 5
    Mistral 7B Reviews
    We solve the most difficult problems to make AI models efficient, helpful and reliable. We are the pioneers of open models. We give them to our users, and empower them to share their ideas. Mistral-7B is a powerful, small model that can be adapted to many different use-cases. Mistral 7B outperforms Llama 13B in all benchmarks. It has 8k sequence length, natural coding capabilities, and is faster than Llama 2. It is released under Apache 2.0 License and we made it simple to deploy on any cloud.
  • 6
    RedPajama Reviews
    GPT-4 and other foundation models have accelerated AI's development. The most powerful models, however, are closed commercial models or partially open. RedPajama aims to create a set leading, open-source models. Today, we're excited to announce that the first phase of this project is complete: the reproduction of LLaMA's training dataset of more than 1.2 trillion tokens. The most capable foundations models are currently closed behind commercial APIs. This limits research, customization and their use with sensitive information. If the open community can bridge the quality gap between closed and open models, fully open-source models could be the answer to these limitations. Recent progress has been made in this area. AI is in many ways having its Linux moment. Stable Diffusion demonstrated that open-source software can not only compete with commercial offerings such as DALL-E, but also lead to incredible creative results from community participation.
  • 7
    LongLLaMA Reviews
    This repository contains a research preview of LongLLaMA. It is a large language-model capable of handling contexts up to 256k tokens. LongLLaMA was built on the foundation of OpenLLaMA, and fine-tuned with the Focused Transformer method. LongLLaMA code was built on the foundation of Code Llama. We release a smaller base variant of the LongLLaMA (not instruction-tuned) on a permissive licence (Apache 2.0), and inference code that supports longer contexts for hugging face. Our model weights are a drop-in replacement for LLaMA (for short contexts up to 2048 tokens) in existing implementations. We also provide evaluation results, and comparisons with the original OpenLLaMA model.
  • 8
    Llama 2 Reviews
    The next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2
  • 9
    Mistral NeMo Reviews
    Mistral NeMo, our new best small model. A state-of the-art 12B with 128k context and released under Apache 2.0 license. Mistral NeMo, a 12B-model built in collaboration with NVIDIA, is available. Mistral NeMo has a large context of up to 128k Tokens. Its reasoning, world-knowledge, and coding precision are among the best in its size category. Mistral NeMo, which relies on a standard architecture, is easy to use. It can be used as a replacement for any system that uses Mistral 7B. We have released Apache 2.0 licensed pre-trained checkpoints and instruction-tuned base checkpoints to encourage adoption by researchers and enterprises. Mistral NeMo has been trained with quantization awareness to enable FP8 inferences without performance loss. The model was designed for global applications that are multilingual. It is trained in function calling, and has a large contextual window. It is better than Mistral 7B at following instructions, reasoning and handling multi-turn conversation.
  • 10
    StarCoder Reviews
    StarCoderBase and StarCoder are Large Language Models (Code LLMs), trained on permissively-licensed data from GitHub. This includes data from 80+ programming language, Git commits and issues, Jupyter Notebooks, and Git commits. We trained a 15B-parameter model for 1 trillion tokens, similar to LLaMA. We refined the StarCoderBase for 35B Python tokens. The result is a new model we call StarCoder. StarCoderBase is a model that outperforms other open Code LLMs in popular programming benchmarks. It also matches or exceeds closed models like code-cushman001 from OpenAI, the original Codex model which powered early versions GitHub Copilot. StarCoder models are able to process more input with a context length over 8,000 tokens than any other open LLM. This allows for a variety of interesting applications. By prompting the StarCoder model with a series dialogues, we allowed them to act like a technical assistant.
  • 11
    Baichuan-13B Reviews

    Baichuan-13B

    Baichuan Intelligent Technology

    Free
    Baichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096.
  • 12
    Hermes 3 Reviews
    Hermes 3 contains advanced long-term context retention and multi-turn conversation capabilities, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Hermes 3 has advanced long-term contextual retention, multi-turn conversation capabilities, complex roleplaying, internal monologue, and enhanced agentic functions-calling. Our training data encourages the model in a very aggressive way to follow the system prompts and instructions exactly and in a highly adaptive manner. Hermes 3 was developed by fine-tuning Llama 3.0 8B, 70B and 405B and training with a dataset primarily containing synthetic responses. The model has a performance that is comparable to Llama 3.1, but with deeper reasoning and creative abilities. Hermes 3 is an instruct and tool-use model series with strong reasoning and creativity abilities.
  • 13
    Teuken 7B Reviews
    Teuken-7B, a multilingual open source language model, was developed under the OpenGPT-X project. It is specifically designed to accommodate Europe's diverse linguistic landscape. It was trained on a dataset that included over 50% non-English text, covering all 24 official European Union languages, to ensure robust performance. Teuken-7B's custom multilingual tokenizer is a key innovation. It has been optimized for European languages and enhances training efficiency. The model comes in two versions: Teuken-7B Base, a pre-trained foundational model, and Teuken-7B Instruct, a model that has been tuned to better follow user prompts. Hugging Face makes both versions available, promoting transparency and cooperation within the AI community. The development of Teuken-7B demonstrates a commitment to create AI models that reflect Europe’s diversity.
  • 14
    Code Llama Reviews
    Code Llama, a large-language model (LLM), can generate code using text prompts. Code Llama, the most advanced publicly available LLM for code tasks, has the potential to improve workflows for developers and reduce the barrier for those learning to code. Code Llama can be used to improve productivity and educate programmers to create more robust, well documented software. Code Llama, a state-of the-art LLM, is capable of generating both code, and natural languages about code, based on both code and natural-language prompts. Code Llama can be used for free in research and commercial purposes. Code Llama is a new model that is built on Llama 2. It is available in 3 models: Code Llama is the foundational model of code; Codel Llama is a Python-specific language. Code Llama-Instruct is a finely tuned natural language instruction interpreter.
  • 15
    Llama 3.1 Reviews
    Open source AI model that you can fine-tune and distill anywhere. Our latest instruction-tuned models are available in 8B 70B and 405B version. Our open ecosystem allows you to build faster using a variety of product offerings that are differentiated and support your use cases. Choose between real-time or batch inference. Download model weights for further cost-per-token optimization. Adapt to your application, improve using synthetic data, and deploy on-prem. Use Llama components and extend the Llama model using RAG and zero shot tools to build agentic behavior. Use 405B high-quality data to improve specialized model for specific use cases.
  • 16
    Giga ML Reviews
    We have just launched the X1 large model series. Giga ML’s most powerful model can be used for pre-training, fine-tuning and on-prem deployment. We are Open AI compliant, so your existing integrations, such as long chain, llama index, and others, will work seamlessly. You can continue to pre-train LLM's using domain-specific databooks or docs, or company documents. The world of large-scale language models (LLMs), which offer unprecedented opportunities for natural language process across different domains, is rapidly expanding. Despite this, there are still some critical challenges that remain unresolved. Giga ML proudly introduces the X1 Large model 32k, a pioneering LLM solution on-premise that addresses these critical challenges.
  • 17
    OLMo 2 Reviews
    OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities.
  • 18
    CodeQwen Reviews
    CodeQwen, developed by the Qwen Team, Alibaba Cloud, is the code version. It is a transformer based decoder only language model that has been pre-trained with a large number of codes. A series of benchmarks shows that the code generation is strong and that it performs well. Supporting long context generation and understanding with a context length of 64K tokens. CodeQwen is a 92-language coding language that provides excellent performance for text-to SQL, bug fixes, and more. CodeQwen chat is as simple as writing a few lines of code using transformers. We build the tokenizer and model using pre-trained methods and use the generate method for chatting. The chat template is provided by the tokenizer. Following our previous practice, we apply the ChatML Template for chat models. The model will complete the code snippets in accordance with the prompts without any additional formatting.
  • 19
    LLaMA Reviews
    LLaMA (Large Language Model meta AI) is a state of the art foundational large language model that was created to aid researchers in this subfield. LLaMA allows researchers to use smaller, more efficient models to study these models. This furtherdemocratizes access to this rapidly-changing field. Because it takes far less computing power and resources than large language models, such as LLaMA, to test new approaches, validate other's work, and explore new uses, training smaller foundation models like LLaMA can be a desirable option. Foundation models are trained on large amounts of unlabeled data. This makes them perfect for fine-tuning for many tasks. We make LLaMA available in several sizes (7B-13B, 33B and 65B parameters), and also share a LLaMA card that explains how the model was built in line with our Responsible AI practices.
  • 20
    PanGu-Σ Reviews
    The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks.
  • 21
    AI21 Studio Reviews

    AI21 Studio

    AI21 Studio

    $29 per month
    AI21 Studio provides API access to Jurassic-1 large-language-models. Our models are used to generate text and provide comprehension features in thousands upon thousands of applications. You can tackle any language task. Our Jurassic-1 models can follow natural language instructions and only need a few examples to adapt for new tasks. Our APIs are perfect for common tasks such as paraphrasing, summarization, and more. Superior results at a lower price without having to reinvent the wheel Do you need to fine-tune your custom model? Just 3 clicks away. Training is quick, affordable, and models can be deployed immediately. Embed an AI co-writer into your app to give your users superpowers. Features like paraphrasing, long-form draft generation, repurposing, and custom auto-complete can increase user engagement and help you to achieve success.
  • 22
    DeepSeek LLM Reviews
    Introducing DeepSeek LLM - an advanced language model with 67 billion parameters. It was trained from scratch using a massive dataset of 2 trillion tokens, both in English and Chinese. To encourage research, we made DeepSeek LLM 67B Base and DeepSeek LLM 67B Chat available as open source to the research community.
  • 23
    Qwen-7B Reviews
    Qwen-7B, also known as Qwen-7B, is the 7B-parameter variant of the large language models series Qwen. Tongyi Qianwen, proposed by Alibaba Cloud. Qwen-7B, a Transformer-based language model, is pretrained using a large volume data, such as web texts, books, code, etc. Qwen-7B is also used to train Qwen-7B Chat, an AI assistant that uses large models and alignment techniques. The Qwen-7B features include: Pre-trained with high quality data. We have pretrained Qwen-7B using a large-scale, high-quality dataset that we constructed ourselves. The dataset contains over 2.2 trillion tokens. The dataset contains plain texts and codes and covers a wide range domains including general domain data as well as professional domain data. Strong performance. We outperform our competitors in a series benchmark datasets that evaluate natural language understanding, mathematics and coding. And more.
  • 24
    Palmyra LLM Reviews
    Palmyra is an enterprise-ready suite of Large Language Models. These models are excellent at tasks like image analysis, question answering, and supporting over 30 languages. They can be fine-tuned for industries such as healthcare and finance. Palmyra models are notable for their top rankings in benchmarks such as Stanford HELM and PubMedQA. Palmyra Fin is the first model that passed the CFA Level III examination. Writer protects client data by not using it to train or modify models. They have a zero-data retention policy. Palmyra includes specialized models, such as Palmyra X 004, which has tool-calling abilities; Palmyra Med for healthcare; Palmyra Fin for finance; and Palmyra Vision for advanced image and video processing. These models are available via Writer's full stack generative AI platform which integrates graph based Retrieval augmented Generation (RAG).
  • 25
    VideoPoet Reviews
    VideoPoet, a simple modeling technique, can convert any large language model or autoregressive model into a high quality video generator. It is composed of a few components. The autoregressive model learns from video, image, text, and audio modalities in order to predict the next audio or video token in the sequence. The LLM training framework introduces a mixture of multimodal generative objectives, including text to video, text to image, image-to video, video frame continuation and inpainting/outpainting, styled video, and video-to audio. Moreover, these tasks can be combined to provide additional zero-shot capabilities. This simple recipe shows how language models can edit and synthesize videos with a high level of temporal consistency.
  • 26
    GPT-4 Reviews

    GPT-4

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
  • 27
    FLAN-T5 Reviews
    FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks.
  • 28
    Stable LM Reviews
    StableLM: Stability AI language models StableLM builds upon our experience with open-sourcing previous language models in collaboration with EleutherAI. This nonprofit research hub. These models include GPTJ, GPTNeoX and the Pythia Suite, which were all trained on The Pile dataset. Cerebras GPT and Dolly-2 are two recent open-source models that continue to build upon these efforts. StableLM was trained on a new dataset that is three times bigger than The Pile and contains 1.5 trillion tokens. We will provide more details about the dataset at a later date. StableLM's richness allows it to perform well in conversational and coding challenges, despite the small size of its dataset (3-7 billion parameters, compared to GPT-3's 175 billion). The development of Stable LM 3B broadens the range of applications that are viable on the edge or on home PCs. This means that individuals and companies can now develop cutting-edge technologies with strong conversational capabilities – like creative writing assistance – while keeping costs low and performance high.
  • 29
    Stable Beluga Reviews
    Stability AI, in collaboration with its CarperAI Lab, announces Stable Beluga 1 (formerly codenamed FreeWilly) and its successor Stable Beluga 2 - two powerful, new Large Language Models. Both models show exceptional reasoning abilities across a variety of benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Stable Beluga 2 uses the LLaMA 270B foundation model for industry-leading performance.
  • 30
    Jurassic-2 Reviews
    Jurassic-2 is the latest generation AI21 Studio foundation models. It's a game changer in the field AI, with new capabilities and top-tier quality. We're also releasing task-specific APIs with superior reading and writing capabilities. AI21 Studio's focus is to help businesses and developers leverage reading and writing AI in order to build real-world, tangible products. The release of Task-Specific and Jurassic-2 APIs marks two significant milestones. They will enable you to bring generative AI into production. Jurassic-2 (or J2, as we like to call it) is the next generation of our foundation models with significant improvements in quality and new capabilities including zero-shot instruction-following, reduced latency, and multi-language support. Task-specific APIs offer developers industry-leading APIs for performing specialized reading and/or writing tasks.
  • 31
    Defense Llama Reviews
    Scale AI is pleased to announce Defense Llama. This Large Language Model (LLM), built on Meta's Llama 3, is customized and fine-tuned for support of American national security missions. Defense Llama is available only in controlled U.S. Government environments within Scale Donovan. It empowers our servicemen and national security professionals by enabling them to apply the power generative AI for their unique use cases such as planning military operations or intelligence operations, and understanding adversary weaknesses. Defense Llama has been trained using a vast dataset that includes military doctrine, international human rights law, and relevant policy designed to align with Department of Defense (DoD), guidelines for armed conflicts, as well as DoD's Ethical Principles of Artificial Intelligence. This allows the model to respond with accurate, meaningful and relevant responses. Scale is proud that it can help U.S. national-security personnel use generative AI for defense in a safe and secure manner.
  • 32
    Vicuna Reviews
    Vicuna-13B, an open-source chatbot, is trained by fine-tuning LLaMA using user-shared conversations from ShareGPT. Vicuna-13B's preliminary evaluation using GPT-4, as a judge, shows that it achieves a quality of more than 90%* for OpenAI ChatGPT or Google Bard and outperforms other models such as LLaMA or Stanford Alpaca. Vicuna-13B costs around $300 to train. The online demo and the code, along with weights, are available to non-commercial users.
  • 33
    Llama 3.2 Reviews
    There are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings.
  • 34
    LTM-2-mini Reviews
    LTM-2 mini is a 100M token model: LTM-2 mini. 100M tokens is 10,000,000 lines of code, or 750 novels. LTM-2 mini's sequence-dimension algorithms is approximately 1000x cheaper for each token decoded than the attention mechanism of Llama 3.0 405B1 when a 100M tokens context window is used. LTM only requires a fraction of one H100 HBM per user to store the same context.
  • 35
    Reka Reviews
    Our enterprise-grade multimodal Assistant is designed with privacy, efficiency, and security in mind. Yasa is trained to read text, images and videos. Tabular data will be added in the future. Use it to generate creative tasks, find answers to basic questions or gain insights from your data. With a few simple commands, you can generate, train, compress or deploy your model on-premise. Our proprietary algorithms can be used to customize our model for your data and use case. We use proprietary algorithms for retrieval, fine tuning, self-supervised instructions tuning, and reinforcement to tune our model using your datasets.
  • 36
    PygmalionAI Reviews
    PygmalionAI, a community of open-source projects based upon EleutherAI’s GPT-J 6B models and Meta’s LLaMA model, was founded in 2009. Pygmalion AI is designed for roleplaying and chatting. The 7B variant of the Pygmalion AI is currently actively supported. It is based on Meta AI’s LLaMA AI model. Pygmalion's chat capabilities are superior to larger language models that require much more resources. Our curated datasets of high-quality data on roleplaying ensure that your bot is the best RP partner. The model weights as well as the code used to train the model are both open-source. You can modify/re-distribute them for any purpose you like. Pygmalion and other language models run on GPUs because they require fast memory and massive processing to produce coherent text at a reasonable speed.
  • 37
    Phi-2 Reviews
    Phi-2 is a 2.7-billion-parameter language-model that shows outstanding reasoning and language-understanding capabilities. It represents the state-of-the art performance among language-base models with less than thirteen billion parameters. Phi-2 can match or even outperform models 25x larger on complex benchmarks, thanks to innovations in model scaling. Phi-2's compact size makes it an ideal playground for researchers. It can be used for exploring mechanistic interpretationability, safety improvements or fine-tuning experiments on a variety tasks. We have included Phi-2 in the Azure AI Studio catalog to encourage research and development of language models.
  • 38
    Cerebras-GPT Reviews
    The training of state-of-the art language models is extremely difficult. They require large compute budgets, complex distributed computing techniques and deep ML knowledge. Few organizations are able to train large language models from scratch. The number of organizations that do not open source their results is increasing, even though they have the expertise and resources to do so. We at Cerebras believe in open access to the latest models. Cerebras is proud to announce that Cerebras GPT, a family GPT models with 111 million to thirteen billion parameters, has been released to the open-source community. These models are trained using the Chinchilla Formula and provide the highest accuracy within a given computing budget. Cerebras GPT has faster training times and lower training costs. It also consumes less power than any other publicly available model.
  • 39
    Codestral Mamba Reviews
    Codestral Mamba is a Mamba2 model that specializes in code generation. It is available under the Apache 2.0 license. Codestral Mamba represents another step in our efforts to study and provide architectures. We hope that it will open up new perspectives in architecture research. Mamba models have the advantage of linear inference of time and the theoretical ability of modeling sequences of unlimited length. Users can interact with the model in a more extensive way with rapid responses, regardless of the input length. This efficiency is particularly relevant for code productivity use-cases. We trained this model with advanced reasoning and code capabilities, enabling the model to perform at par with SOTA Transformer-based models.
  • 40
    IBM Granite Reviews
    IBM® Granite™ is an AI family that was designed from scratch for business applications. It helps to ensure trust and scalability of AI-driven apps. Granite models are open source and available today. We want to make AI accessible to as many developers as we can. We have made the core Granite Code, Time Series models, Language and GeoSpatial available on Hugging Face, under a permissive Apache 2.0 licence that allows for broad commercial use. Granite models are all trained using carefully curated data. The data used to train them is transparent at a level that is unmatched in the industry. We have also made the tools that we use available to ensure that the data is of high quality and meets the standards required by enterprise-grade applications.
  • 41
    DBRX Reviews
    Databricks has created an open, general purpose LLM called DBRX. DBRX is the new benchmark for open LLMs. It also provides open communities and enterprises that are building their own LLMs capabilities that were previously only available through closed model APIs. According to our measurements, DBRX surpasses GPT 3.5 and is competitive with Gemini 1.0 Pro. It is a code model that is more capable than specialized models such as CodeLLaMA 70B, and it also has the strength of a general-purpose LLM. This state-of the-art quality is accompanied by marked improvements in both training and inference performances. DBRX is the most efficient open model thanks to its finely-grained architecture of mixtures of experts (MoE). Inference is 2x faster than LLaMA2-70B and DBRX has about 40% less parameters in total and active count compared to Grok-1.
  • 42
    CodeGemma Reviews
    CodeGemma consists of powerful lightweight models that are capable of performing a variety coding tasks, including fill-in the middle code completion, code creation, natural language understanding and mathematical reasoning. CodeGemma offers 3 variants: a 7B model that is pre-trained to perform code completion, code generation, and natural language-to code chat. A 7B model that is instruction-tuned for instruction following and natural language-to code chat. You can complete lines, functions, or even entire blocks of code whether you are working locally or with Google Cloud resources. CodeGemma models are trained on 500 billion tokens primarily of English language data taken from web documents, mathematics and code. They generate code that is not only syntactically accurate but also semantically meaningful. This reduces errors and debugging times.
  • 43
    ChatGPT Enterprise Reviews
    ChatGPT Enterprise is the most powerful version yet, with enterprise-grade security and privacy. 1. Training models do not use customer prompts or data 2. Data encryption in transit and at rest (TLS 1.2+). 3. SOC 2 compliant 4. Easy bulk member management and dedicated admin console 5. SSO and Domain Verification 6. Use the analytics dashboard to understand usage 7. Access to GPT-4 Advanced Data Analysis and GPT-4 at high speed is unlimited 8. 32k token context window for 4X longer inputs, memory and inputs 9. Shareable chat templates to help your company collaborate
  • 44
    OPT Reviews
    The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model.
  • 45
    Codestral Reviews
    We are proud to introduce Codestral, the first code model we have ever created. Codestral is a generative AI model that is open-weight and specifically designed for code generation. It allows developers to interact and write code using a shared API endpoint for instructions and completion. It can be used for advanced AI applications by software developers as it is able to master both code and English. Codestral has been trained on a large dataset of 80+ languages, including some of the most popular, such as Python and Java. It also includes C, C++ JavaScript, Bash, C, C++. It also performs well with more specific ones, such as Swift and Fortran. Codestral's broad language base allows it to assist developers in a variety of coding environments and projects.
  • 46
    Claude 3.5 Sonnet Reviews
    Claude 3.5 Sonnet is a new benchmark for the industry in terms of graduate-level reasoning (GPQA), undergrad-level knowledge (MMLU), as well as coding proficiency (HumanEval). It is exceptional in writing high-quality, relatable content that is written with a natural and relatable tone. It also shows marked improvements in understanding nuance, humor and complex instructions. Claude 3.5 Sonnet is twice as fast as Claude 3 Opus. Claude 3.5 Sonnet is ideal for complex tasks, such as providing context-sensitive support to customers and orchestrating workflows. Claude 3.5 Sonnet can be downloaded for free from Claude.ai and Claude iOS, and subscribers to the Claude Pro and Team plans will have access to it at rates that are significantly higher. It is also accessible via the Anthropic AI, Amazon Bedrock and Google Cloud Vertex AI. The model costs $3 for every million input tokens. It costs $15 for every million output tokens. There is a 200K token window.
  • 47
    Granite Code Reviews
    We introduce the Granite family of decoder only code models for code generation tasks (e.g. fixing bugs, explaining codes, documenting codes), trained with code in 116 programming language. The Granite Code family has been evaluated on a variety of tasks and demonstrates that the models are consistently at the top of their game among open source code LLMs. Granite Code models have a number of key advantages. Granite Code models are able to perform at a competitive level or even at the cutting edge of technology in a variety of code-related tasks including code generation, explanations, fixing, translation, editing, and more. Demonstrating the ability to solve a variety of coding tasks. IBM's Corporate Legal team guides all models for trustworthy enterprise use. All models are trained using license-permissible datasets collected according to IBM's AI Ethics Principles.
  • 48
    Jamba Reviews
    Jamba is a powerful and efficient long context model that is open to builders, but built for enterprises. Jamba's latency is superior to all other leading models of similar size. Jamba's 256k window is the longest available. Jamba's Mamba Transformer MoE Architecture is designed to increase efficiency and reduce costs. Jamba includes key features from OOTB, including function calls, JSON output, document objects and citation mode. Jamba 1.5 models deliver high performance throughout the entire context window. Jamba 1.5 models score highly in common quality benchmarks. Secure deployment tailored to your enterprise. Start using Jamba immediately on our production-grade SaaS Platform. Our strategic partners can deploy the Jamba model family. For enterprises who require custom solutions, we offer VPC and on-premise deployments. We offer hands-on management and continuous pre-training for enterprises with unique, bespoke needs.
  • 49
    Pixtral 12B Reviews
    Pixtral 12B, a multimodal AI model pioneered by Mistral AI and designed to process and understand both text and images data seamlessly, is a groundbreaking AI model. This model represents a significant advance in the integration of data types. It allows for more intuitive interaction and enhanced content creation abilities. Pixtral 12B, which is based on Mistral's NeMo 12B Text Model, incorporates an additional Vision Adapter that adds 400 million parameters. This allows it to handle visual inputs of up to 1024x1024 pixels. This model is capable of a wide range of applications from image analysis to answering visual content questions. Its versatility is demonstrated in real-world scenarios. Pixtral 12B is a powerful tool for developers, as it not only has a large context of 128k tokens, but also uses innovative techniques such as GeLU activation and RoPE 2D for its vision components.
  • 50
    GPT-5 Reviews

    GPT-5

    OpenAI

    $0.0200 per 1000 tokens
    GPT-5 is OpenAI's Generative Pretrained Transformer. It is a large-language model (LLM), which is still in development. LLMs have been trained to work with massive amounts of text and can generate realistic and coherent texts, translate languages, create different types of creative content and answer your question in a way that is informative. It's still not available to the public. OpenAI has not announced a release schedule, but some believe it could launch in 2024. It's expected that GPT-5 will be even more powerful. GPT-4 has already proven to be impressive. It is capable of writing creative content, translating languages and generating text of human-quality. GPT-5 will be expected to improve these abilities, with improved reasoning, factual accuracy and ability to follow directions.