Best LigPlot+ Alternatives in 2025

Find the top alternatives to LigPlot+ currently available. Compare ratings, reviews, pricing, and features of LigPlot+ alternatives in 2025. Slashdot lists the best LigPlot+ alternatives on the market that offer competing products that are similar to LigPlot+. Sort through LigPlot+ alternatives below to make the best choice for your needs

  • 1
    AutoDock Reviews
    AutoDock is a comprehensive suite comprising automated docking tools that aim to forecast the binding interactions of small molecules, like substrates or potential drugs, with a receptor that has a known three-dimensional structure. Over time, this toolset has undergone various modifications and enhancements to introduce new features, alongside the development of multiple computational engines. The software currently includes two main versions: AutoDock 4 and AutoDock Vina, each serving distinct purposes. Recently, the introduction of AutoDock-GPU has provided a significantly accelerated alternative to AutoDock4, achieving docking speeds that are remarkably hundreds of times faster than the original single-CPU version. AutoDock 4 is fundamentally made up of two core components: autodock, which executes the docking of the ligand onto a series of grids that represent the target protein, and autogrid, which is responsible for generating these grids ahead of time. These atomic affinity grids are not just useful for docking purposes; they can also be visualized to aid researchers, particularly organic synthetic chemists, in crafting more effective binding agents. This visualization capability can help streamline the process of drug design significantly.
  • 2
    SYNTHIA Retrosynthesis Software Reviews
    SYNTHIA™ Retrosynthesis software, developed by computer scientists and coded by chemists, allows scientists to quickly and easily navigate novel and innovative pathways for novel and previously published target molecules. You can quickly and efficiently scan hundreds pathways to identify the best options for your needs. Discover the most cost-effective route to your target molecule with the latest visualization and filtering features. You can easily customize the search parameters to eliminate or highlight reactions, reagents, or classes of molecules. Explore innovative and unique syntheses to build your desired molecule. Easy to generate a list for starting materials that are commercially available for your synthesis. ISO/IEC 27001 Information Security Certification will guarantee the confidentiality, integrity and protection of your data.
  • 3
    3decision Reviews
    3decision® serves as a cloud-based repository for protein structures, focusing on efficient management of structural data and offering sophisticated analytics to support teams involved in the discovery of small molecules and biologics, thereby expediting the process of structure-based drug design. The platform consolidates and standardizes both experimental and computational protein structures sourced from publicly available databases such as RCSB PDB and AlphaFoldDB, in addition to proprietary datasets, and accommodates formats like PDBx/mmCIF and ModelCIF. This comprehensive approach guarantees seamless access to a variety of structural formats including X-Ray, NMR, cryo-EM, and modeled structures, thereby promoting collaboration and bolstering research initiatives. In addition to its storage capabilities, 3decision® enhances each entry with valuable metadata and sequence information, which encompasses details on protein-ligand interactions, antibody annotations, and specifics about binding sites. Equipped with advanced analytical instruments, the platform is capable of pinpointing druggable sites, evaluating off-target risks, and facilitating comparisons of binding sites, which collectively transform extensive structural datasets into practical insights that can drive research forward. Furthermore, its cloud-based architecture fosters enhanced collaboration among research teams, making it easier for scientists to share findings and insights, ultimately leading to more innovative approaches in drug discovery and development.
  • 4
    SILCS Reviews
    Site-Identification by Ligand Competitive Saturation (SILCS) produces three-dimensional maps, known as FragMaps, that illustrate how different chemical functional groups interact with a specific target molecule. By revealing the complexities of molecular dynamics, SILCS offers tools that enhance the optimization of ligand scaffolds through both qualitative and quantitative insights into binding pockets, thereby streamlining the drug design process. This approach employs a range of small molecule probes, each featuring diverse functional groups, alongside explicit solvent modeling and accommodating the flexibility of the target molecule to effectively map protein targets. Furthermore, the technique allows researchers to visualize advantageous interactions with the target macromolecule. With these insights, scientists can strategically design improved ligands with functional groups situated in optimal positions for enhanced efficacy. The innovative nature of SILCS represents a significant advancement in the field of medicinal chemistry.
  • 5
    Aurora Drug Discovery Reviews
    Aurora utilizes principles of quantum mechanics and thermodynamics alongside a sophisticated continuous water model to assess the solvation effects on ligand binding affinities. This methodology is significantly different from the traditional scoring functions typically employed for predicting binding affinities. By integrating entropy and aqueous electrostatic contributions directly into the computations, Aurora's algorithms yield far more precise and reliable binding free energy values. The interaction between a ligand and a protein is fundamentally defined by the binding free energy value. This free energy (F) serves as a thermodynamic measure that correlates directly with the experimentally determined inhibition constant (IC50), influenced by factors such as electrostatic interactions, quantum effects, aqueous solvation forces, and the statistical characteristics of the molecules involved. Non-additivity in F arises primarily from two key components: the electrostatic and solvation energy, and the entropy, which together contribute to the complexity of ligand-protein interactions. Understanding these contributions is essential for the accurate prediction of binding affinities in drug design and molecular biology.
  • 6
    VeraChem Reviews
    Founded in 2000, VeraChem LLC aims to enhance the field of computer-aided drug discovery and molecular design by creating advanced computational chemistry techniques that merge innovative basic science with practical applications in research. A key aspect of the company's strategy for product development lies in delivering efficient, high-performance software solutions along with extensive user support. Among the current capabilities of VeraChem's software are predictions for protein-ligand and host-guest binding affinities, rapid and precise calculations of partial atomic charges for drug-like molecules, and the computation of energies and forces utilizing widely-used empirical force fields. Additionally, the software features automatic generation of alternate resonance forms for drug-like compounds, a robust conformational search enabled by the Tork algorithm, and the automatic identification of topological and three-dimensional molecular symmetries. The modular code base of VeraChem’s software packages allows for flexibility and adaptability in meeting diverse research needs, ensuring that users can leverage these tools effectively for their specific applications.
  • 7
    Promethium Reviews

    Promethium

    Promethium

    $30 per hour
    Promethium is an innovative platform for chemistry simulations that harnesses the power of GPUs to significantly speed up the development of drugs and materials by providing more efficient and precise quantum chemistry calculations. Specifically engineered for NVIDIA data center GPUs, such as the A100, it utilizes advanced QC Ware streaming algorithms to deliver remarkable computational speed and impressive power efficiency. This platform can perform density functional theory (DFT) calculations on molecular systems containing as many as 2,000 atoms, enabling researchers to conduct simulations of large molecular structures that traditional CPU-based ab initio methods cannot handle. For example, it can execute a single-point calculation for a protein with 2,056 atoms in just 14 hours using only one GPU. Promethium is equipped with a diverse array of functionalities, including single-point energy computations, geometry optimizations, conformer searches, torsion scans, reaction path optimizations, transition state optimizations, interaction energy evaluations, and relaxed potential energy surface explorations. Its capabilities make it a powerful tool for chemists looking to push the boundaries of molecular modeling and simulation. Ultimately, Promethium is set to transform the landscape of computational chemistry.
  • 8
    BioNeMo Reviews
    BioNeMo is a cloud service and framework for drug discovery that leverages AI, built on NVIDIA NeMo Megatron, which enables the training and deployment of large-scale biomolecular transformer models. This service features pre-trained large language models (LLMs) and offers comprehensive support for standard file formats related to proteins, DNA, RNA, and chemistry, including data loaders for SMILES molecular structures and FASTA sequences for amino acids and nucleotides. Additionally, users can download the BioNeMo framework for use on their own systems. Among the tools provided are ESM-1 and ProtT5, both transformer-based protein language models that facilitate the generation of learned embeddings for predicting protein structures and properties. Furthermore, the BioNeMo service will include OpenFold, an advanced deep learning model designed for predicting the 3D structures of novel protein sequences, enhancing its utility for researchers in the field. This comprehensive offering positions BioNeMo as a pivotal resource in modern drug discovery efforts.
  • 9
    metaphactory Reviews
    Metaphactory converts your data into valuable, contextual, and actionable insights, fostering ongoing decision-making intelligence. It features user-friendly interfaces that allow for seamless searching, browsing, and exploration of your Knowledge Graph right from the start. With a low-code methodology, you can create tailored interfaces that facilitate user engagement with the Knowledge Graph. You can begin with a small-scale implementation, continually refine it, and introduce additional use cases, data, and users as needed. This platform supports agile knowledge management and enables the development of applications with ease, promoting dynamic growth and adaptability in business environments. As a result, organizations can effectively manage and utilize their knowledge assets to enhance operational efficiency.
  • 10
    Iktos Reviews
    Makya stands out as the pioneering user-centric SaaS platform dedicated to AI-enhanced de novo drug design, particularly emphasizing Multi-Parametric Optimization (MPO). This innovative tool empowers users to create novel and easily synthesize compounds based on a multi-objective framework, achieving unprecedented levels of speed, efficiency, and variety. Makya incorporates a range of generative algorithms tailored to various stages of drug development, from hit discovery to lead optimization; it includes a fine-tuning generator for pinpointing ideal solutions within your specified chemical landscape, a novelty generator designed to explore fresh concepts for re-scaffolding and hit discovery, and a forward generator to create a targeted library of compounds that can be readily synthesized from commercially available starting materials. The recently introduced Makya 3D module significantly improves both the user interface and the scientific capabilities of the platform. With a comprehensive array of 3D modeling functionalities available for both ligand-based and structure-based approaches, Makya 3D allows for the calculation of 3D scores, which can be seamlessly utilized to guide compound generation within the platform. This integration not only enhances the design process but also offers researchers deeper insights into their molecular designs.
  • 11
    NVIDIA Clara Reviews
    Clara provides specialized tools and pre-trained AI models that are driving significant advancements across various sectors, such as healthcare technologies, medical imaging, pharmaceutical development, and genomic research. Delve into the comprehensive process of developing and implementing medical devices through the Holoscan platform. Create containerized AI applications using the Holoscan SDK in conjunction with MONAI, and enhance deployment efficiency in next-gen AI devices utilizing the NVIDIA IGX developer kits. Moreover, the NVIDIA Holoscan SDK is equipped with acceleration libraries tailored for healthcare, alongside pre-trained AI models and sample applications designed for computational medical devices. This combination of resources fosters innovation and efficiency, positioning developers to tackle complex challenges in the medical field.
  • 12
    Kanteron Reviews
    The Kanteron Platform assimilated a wide array of medical images, digital pathology slides, genomic sequences, and patient information from various modalities, scanners, sequencers, and databases, delivering a comprehensive data toolkit to all teams within hospital networks. It emphasizes pharmacogenomics to avert adverse medication events and facilitates the application of precision medicine at the point of care by integrating data sources on drug-gene interactions that were formerly only accessible in less user-friendly formats, such as tables found in PDF documents. By incorporating major pharmacogenomic databases like PharmGKB, CGI, DGIdb, and OpenTargets, it enables users to customize their queries according to specific gene families, types of interactions, and drug classifications. Additionally, its adaptable AI allows users to select the dataset that best aligns with their specific use case, applying it effectively to pertinent medical images. This robust functionality not only enhances the accuracy of medical insights but also fosters a more personalized approach to patient care.
  • 13
    Healnet Reviews
    Rare diseases often lack comprehensive research, resulting in insufficient knowledge about essential elements for an effective drug discovery initiative. Our innovative AI platform, Healnet, addresses these issues by scrutinizing vast amounts of drug and disease data to uncover new connections that may lead to potential treatments. Utilizing cutting-edge technologies throughout the discovery and development process allows us to operate multiple phases simultaneously and on a large scale. The conventional approach of focusing on a single disease, target, and drug is overly simplistic, yet it remains the standard for most pharmaceutical companies. The future of drug discovery is driven by AI, characterized by parallel processes and an absence of rigid hypotheses, fundamentally integrating the three core paradigms of drug discovery into a cohesive strategy. This new paradigm not only enhances efficiency but also fosters creativity in developing solutions for complex health challenges.
  • 14
    AQBioSim Reviews
    AQBioSim is an innovative cloud-based platform created by SandboxAQ that utilizes Large Quantitative Models (LQMs) based on principles of physics and chemistry to transform the processes of material discovery and optimization. By combining techniques such as Density Functional Theory (DFT), Iterative Full Configuration Interaction (iFCI), Generative AI, Bayesian Optimization, and Chemical Foundation Models, AQBioSim facilitates highly accurate simulations of molecular and material behaviors in real-world scenarios. Among its numerous features, AQBioSim can predict performance under various stressors, enhance formulation processes through in silico testing, and investigate eco-friendly chemical methods. A standout achievement of AQBioSim lies in its remarkable progress in battery technology, where it has cut the time needed for lithium-ion battery end-of-life predictions by an astonishing 95%, while also attaining 35 times greater accuracy using only 50 times less data. This platform thus not only accelerates material innovation but also significantly contributes to advancements in sustainable energy solutions.
  • 15
    Genedata Biologics Reviews
    Genedata Biologics® enhances the development of biotherapeutics, including bispecifics, ADCs, TCRs, CAR-Ts, and AAVs, providing a comprehensive solution for the industry. Recognized as the leading platform in the field, it seamlessly unifies all discovery workflows, allowing researchers to prioritize genuine innovation. By utilizing a pioneering platform that was purposefully created to digitalize the biotherapeutic discovery process, research can be accelerated significantly. The platform simplifies intricate R&D tasks by facilitating the design, tracking, testing, and evaluation of novel biotherapeutic drugs. It is compatible with various formats, such as antibodies, bi- or multi-specifics, ADCs, innovative scaffolds, and therapeutic proteins, as well as engineered therapeutic cell lines like TCRs and CAR-T cells. Functioning as a comprehensive end-to-end data backbone, Genedata Biologics connects all R&D processes, including library design, immunization, selection and panning, molecular biology, screening, protein engineering, expression, purification, and protein analytics, ultimately leading to thorough assessments of candidate developability and manufacturability. This holistic integration ensures that researchers can make informed decisions and push the boundaries of biotherapeutic innovation effectively.
  • 16
    AlphaFold Reviews
    Proteins, which are remarkably complex machines, play a crucial role not only in the biological functions of your body but also in every living organism's processes. They serve as the fundamental units of life. As of now, there are approximately 100 million identified proteins, with discoveries being made regularly. Each protein possesses a distinctive three-dimensional shape that is essential to its functionality and purpose. However, determining a protein's precise structure is often a costly and lengthy endeavor, resulting in an understanding of only a small percentage of the proteins recognized by science. Addressing this growing disparity and developing methods to predict the structures of millions of yet-to-be-discovered proteins could significantly advance our ability to combat diseases, expedite the discovery of new treatments, and potentially unveil the secrets of life's mechanisms. The implications of such advancements could transform both medicine and our understanding of biology.
  • 17
    Dotmatics Reviews
    Dotmatics is the global leader in R&D scientific software that connects science, data, and decision-making. More than 2 million scientists and 10,000 customers trust Dotmatics to accelerate research and help make the world a healthier, cleaner, and safer place to live.
  • 18
    HyperProtein Reviews
    HyperProtein is the latest offering from Hypercube, Inc., concentrating on the computational analysis of protein sequences. This innovative product not only examines one-dimensional sequences but also delves into the resulting three-dimensional structures of proteins. A key aspect of HyperProtein is its exploration of the intricate relationship between a protein's sequence and its structural form. In contrast to standalone software that targets specific functions like sequence alignment, HyperProtein combines a wide array of Bioinformatics and Molecular Modeling tools, providing a comprehensive approach to the science that begins with a protein sequence. By integrating these diverse tools, HyperProtein aims to enhance the understanding of protein functions and interactions at a molecular level, making it a valuable resource for researchers in the field.
  • 19
    Mass Dynamics Reviews
    Uncover biological markers, generate insights into the mechanisms of disease, identify novel pharmaceuticals, or detect variations in protein concentrations through a meticulously structured series of experiments. We have simplified the process of harnessing the potential of mass spectrometry and proteomics, enabling you to concentrate on the intricacies of biology and advance toward groundbreaking discoveries. Our automated and consistent workflow facilitates faster initiation and completion of experiments, granting you the authority and adaptability to make timely decisions. By prioritizing biological insights and fostering collaborative efforts, our scalable proteomics data processing system is designed for repeated use. We have delegated intensive and repetitive tasks to the cloud, ensuring a smooth and satisfying experience. Our sophisticated proteomics workflow effectively integrates numerous complex elements, allowing for the efficient analysis and processing of larger-scale experiments, ultimately enhancing the research journey. Thus, with our innovative approach, researchers can now delve deeper into the molecular landscape and achieve more significant breakthroughs than ever before.
  • 20
    Eidogen-Sertanty Target Informatics Platform (TIP) Reviews
    Eidogen-Sertanty's Target Informatics Platform (TIP) stands out as the pioneering structural informatics system and knowledgebase that empowers researchers to explore the druggable genome through a structural lens. By harnessing the burgeoning wealth of experimental protein structure data, TIP revolutionizes structure-based drug discovery, shifting it from a limited, low-throughput field to a dynamic and data-rich scientific discipline. It is specifically designed to connect the realms of bioinformatics and cheminformatics, providing drug discovery scientists with a repository of insights that are not only unique but also highly synergistic with the information available from traditional bio- and cheminformatics tools. The platform's innovative combination of structural data management with advanced target-to-lead calculation and analytical capabilities significantly enhances every phase of the drug discovery process. With TIP, researchers are better equipped to navigate the complexities of drug development and make informed decisions.
  • 21
    AIDDISON Reviews
    AIDDISON™ is an innovative drug discovery software that harnesses the capabilities of artificial intelligence (AI), machine learning (ML), and advanced 3D computer-aided drug design (CADD) techniques, serving as an essential resource for medicinal chemistry applications. This comprehensive platform streamlines both ligand-based and structure-based drug design, effectively merging all components necessary for virtual screening while also facilitating in-silico lead discovery and optimization processes. By leveraging these cutting-edge technologies, AIDDISON™ significantly enhances the efficiency and effectiveness of the drug development pipeline.
  • 22
    BIOVIA Discovery Studio Reviews
    The biopharmaceutical sector today is characterized by its intricacy, driven by increasing demands for enhanced specificity and safety, the emergence of new treatment classes, and the complexity of disease mechanisms. To navigate this intricate landscape, a profound comprehension of therapeutic dynamics is essential. Advanced modeling and simulation techniques offer a distinctive approach to investigate biological and physicochemical phenomena at the atomic scale. This methodology not only informs physical experimentation but also expedites the drug discovery and development phases. BIOVIA Discovery Studio integrates more than three decades of peer-reviewed research with cutting-edge in silico methodologies, including molecular mechanics, free energy assessments, and biotherapeutics developability, all within a unified framework. By equipping researchers with a comprehensive suite of tools, it facilitates a deeper examination of protein chemistry, thereby accelerating the discovery of both small and large molecule therapeutics, from Target Identification all the way through to Lead Optimization. Ultimately, this synergy of research and technology underscores the vital role of innovative tools in transforming biopharmaceutical advancements.
  • 23
    SpliceCore Reviews
    Harnessing RNA sequencing (RNA-seq) data alongside Artificial Intelligence presents both a crucial necessity and a significant opportunity for creating therapies aimed at correcting splicing errors. By leveraging machine learning, we can uncover novel splicing errors and swiftly formulate therapeutic compounds to address them. Our AI platform, SpliceCore, is specifically designed for discovering RNA therapeutics. This cutting-edge technology focuses on analyzing RNA sequencing data with unparalleled efficiency. It can swiftly identify, evaluate, and validate potential drug targets, outpacing traditional methodologies. Central to SpliceCore is our unique repository containing over 5 million potential RNA splicing errors, making it the largest of its kind globally and instrumental for testing any RNA sequencing dataset submitted for analysis. The integration of scalable cloud computing allows us to handle vast quantities of RNA sequencing data in a way that is not only efficient but also cost-effective, significantly speeding up the pace of therapeutic advancements. This innovative approach promises to revolutionize the landscape of RNA therapeutics.
  • 24
    PyQtGraph Reviews
    PyQtGraph is a graphics and GUI library developed in pure Python, utilizing PyQt/PySide alongside NumPy, designed primarily for applications in mathematics, science, and engineering. Despite its complete implementation in Python, the library achieves impressive speed by effectively utilizing NumPy for numerical computations and the Qt GraphicsView framework for efficient rendering. Released under the MIT open-source license, PyQtGraph supports fundamental 2D plotting through interactive view boxes, enabling line and scatter plots with user-friendly mouse control for panning and scaling. Its ability to handle various data types, including integers, floats, and different bit depths, is complemented by functionalities for slicing multidimensional images at various angles, making it particularly useful for MRI data analysis. Furthermore, it facilitates rapid updates suitable for video display or real-time interactions, along with image display features that include interactive lookup tables and level adjustments. The library also provides mesh rendering capabilities with isosurface generation, while interactive viewports allow users to rotate and zoom with ease using the mouse. Additionally, it incorporates a basic 3D scenegraph, simplifying the programming process for three-dimensional data visualization. With its robust set of features, PyQtGraph caters to a wide range of visualization needs and enhances user experience through interactivity.
  • 25
    Cortellis Reviews
    Discover valuable insights within your data by utilizing the Cortellis™ suite of life science intelligence tools, enabling you to make more informed decisions throughout the entire R&D process. We have alleviated the burden of gathering, integrating, and analyzing data, allowing you to concentrate on the essential choices necessary for expediting your products' market entry. With a unique combination of extensive, high-quality data, fortified by profound domain knowledge, industry insight, and therapeutic expertise, Cortellis reveals crucial insights that facilitate data-driven decisions, ultimately speeding up innovation. Access tailored, actionable responses to your specific inquiries throughout the R&D lifecycle, drawing from the most comprehensive and in-depth intelligence sources available. By incorporating Cortellis into your daily routine, you can significantly enhance the pace of innovation and streamline your workflow. This makes Cortellis not just a tool, but a vital partner in your path to success.
  • 26
    CDD Vault Reviews

    CDD Vault

    Collaborative Drug Discovery

    CDD Vault allows you to intuitively organize chemical structures, biological study data, as well as collaborate with external or internal partners via a simple web interface. Start a free trial to see how easy it can be to manage drug discovery data. Tailored for You Affordable Scales with your project team Activity & Registration * Electronic Lab Notebook * Visualization * Inventory * APIs
  • 27
    Genedata Imagence Reviews
    Genedata Imagence® provides a platform for training deep neural networks that classify cellular phenotypes in high-content screening (HCS) images, ensuring that the results are both unbiased and of superior quality. By automating the analysis process, it enables assay biologists to harness the capabilities of deep learning algorithms effectively. With Genedata Imagence, biologists can analyze HCS imaging data in real-time using advanced deep learning methods, all without requiring extensive knowledge of the underlying algorithms. This eliminates the complexity often associated with data analysis, as the user-friendly interface of Genedata Imagence facilitates quality control and data exploration throughout the entire workflow. As a result, researchers can focus on deriving insights rather than getting lost in intricate coding.
  • 28
    StarDrop Reviews
    StarDrop™, a comprehensive suite of integrated software, delivers the best in silico technology within a highly visual interface. StarDrop™, which allows seamless flow between the latest data, predictive modeling, and decision-making regarding the next round or synthesis, improves the speed, efficiency and productivity of the discovery process. A balance of different properties is essential for successful compounds. StarDrop™, which guides you through the multi-parameter optimization challenge, helps you target compounds with the highest chance of success. It also saves you time and resources by allowing you to synthesize fewer compounds and test them less often.
  • 29
    Elucidata Polly Reviews
    Leverage the capabilities of biomedical data through the Polly Platform, which is designed to enhance the scalability of batch jobs, workflows, coding environments, and visualization tools. By facilitating resource pooling, Polly optimally allocates resources according to your specific usage needs and leverages spot instances whenever feasible. This functionality contributes to increased optimization, improved efficiency, quicker response times, and reduced costs associated with resource utilization. Additionally, Polly provides a real-time dashboard for monitoring resource consumption and expenses, effectively reducing the burden of resource management on your IT department. An essential aspect of Polly's framework is its commitment to version control, ensuring that your workflows and analyses maintain consistency through a strategic combination of dockers and interactive notebooks. Furthermore, we've implemented a system that enables seamless co-existence of data, code, and the computing environment, enhancing collaboration and reproducibility. With cloud-based data storage and project sharing capabilities, Polly guarantees that every analysis you conduct can be reliably reproduced and verified. Thus, Polly not only optimizes your workflow but also fosters a collaborative environment for continuous improvement and innovation.
  • 30
    Discngine Assay Reviews
    Discngine Assay serves as a comprehensive laboratory informatics platform that unifies all stages of plate-based assays into a streamlined, compliant, and effective workflow, proving to be a vital resource for screening research laboratories. This platform empowers researchers to optimize their entire High Throughput Screening process, encompassing everything from managing samples and analyzing assay data to data storage and qualifying liquid handling instruments. With its user-friendly interface and powerful API, Discngine Assay integrates effortlessly with laboratory equipment and the existing IT infrastructure, facilitating effective data collection and processing. Tailored to expedite the discovery of new molecules, it meets the requirements of the pharmaceutical, biotech, and contract research organization sectors, thereby promoting collaboration and fostering innovation within life sciences research. Furthermore, its ability to adapt to various laboratory environments makes it a versatile solution for evolving research demands.
  • 31
    DNAnexus Apollo Reviews
    DNAnexus Apollo™ enhances the efficiency of precision drug discovery by fostering collaboration that extracts valuable insights from omics data. The process of precision drug discovery involves the aggregation and examination of vast amounts of omics and clinical information. These extensive datasets serve as valuable assets; however, many traditional and custom-built informatics tools struggle to manage their intricacies and scale. Additionally, the effectiveness of precision medicine initiatives can be hindered by fragmented data sources, inadequate collaboration tools, and the challenges posed by complex, evolving regulatory and security demands. By enabling scientists and clinicians to jointly investigate and interpret omics and clinical data within a unified framework, DNAnexus Apollo™ bolsters precision drug discovery efforts. This platform, which is powered by a resilient and scalable cloud infrastructure, facilitates the seamless and secure sharing of data, tools, and analyses among peers and collaborators, regardless of whether they are nearby or across the globe. Ultimately, Apollo not only streamlines the data-sharing process but also enhances the overall collaborative experience in the pursuit of innovative drug discoveries.
  • 32
    NoviSight 3D Reviews
    NoviSight 3D cell analysis software enhances your research by delivering statistical insights for spheroids and various 3D structures in microplate experiments. This software allows for the quantification of cellular activity in three dimensions, facilitating the capture of infrequent cellular occurrences, providing precise cell counts, and boosting detection sensitivity. Featuring an intuitive user interface, NoviSight equips you with essential tools for recognition, analysis, and statistical evaluation. Its True 3D technology simplifies the assessment of sample morphology, allowing for the measurement of various parameters such as volume and sphericity of spheroids or cell nuclei. Additionally, it enables the examination of physiologically relevant 3D cell models, thereby accelerating your research processes. The software is capable of analyzing objects of interest to yield morphology and spatiotemporal parameters within a 3D context. Furthermore, it can detect a range of entities, from entire structures to subcellular components, and assess changes occurring in spheroids, ultimately contributing to a deeper understanding of cellular dynamics. This comprehensive analysis ultimately supports researchers in their quest to uncover critical biological insights.
  • 33
    Genomenon Reviews
    Pharmaceutical companies require extensive genomic data to effectively implement precision medicine initiatives; however, they frequently rely on merely 10% of the available information for their decisions. Genomenon provides access to the complete dataset. Their Prodigy™ Patient Landscapes offer a streamlined and economical solution for natural history research, aiding the creation of therapies for rare diseases by deepening understanding of both retrospective and prospective health data. Utilizing an advanced AI-driven methodology, Genomenon conducts a thorough evaluation of each patient documented in the medical literature in a significantly reduced timeframe. Ensure you capture all relevant insights by exploring every genomic biomarker featured in published studies. Each scientific claim is substantiated by concrete evidence drawn from the medical literature, allowing researchers to uncover all genetic drivers and identify variants recognized as pathogenic in accordance with ACMG clinical standards, thereby enhancing the development process of targeted therapies. By leveraging this comprehensive approach, pharma companies can enhance their research effectiveness and ultimately improve patient outcomes.
  • 34
    Schrödinger Reviews
    Revolutionize the fields of drug discovery and materials research through cutting-edge molecular modeling techniques. Our computational platform, grounded in physics, combines unique solutions for predictive modeling, data analysis, and collaboration, facilitating swift navigation of chemical space. This innovative platform is employed by leading industries globally, serving both drug discovery initiatives and materials science applications across various sectors including aerospace, energy, semiconductors, and electronic displays. It drives our internal drug discovery projects, overseeing processes from target identification through hit discovery and lead optimization. Additionally, it enhances our collaborative research efforts aimed at creating groundbreaking medicines to address significant public health challenges. With a dedicated team of over 150 Ph.D. scientists, we commit substantial resources to research and development. Our contributions to the scientific community include more than 400 peer-reviewed publications that validate the efficacy of our physics-based methodologies, and we remain at the forefront of advancing computational modeling techniques. We are steadfast in our mission to innovate and expand the possibilities within our field.
  • 35
    ArgusLab Reviews
    ArgusLab is a program designed for molecular modeling, graphics, and drug design, specifically for Windows platforms. While it may be somewhat outdated, it continues to enjoy a surprising level of popularity with over 20,000 downloads recorded. This software is available under a free license, which means you don't have to fill out any forms to access it. Educators can utilize as many copies as necessary for their classes, allowing students to benefit from ArgusLab’s features. However, it is important to note that redistributing ArgusLab from external websites is prohibited, although linking to the official site from your own is permitted. Currently, there is a modest initiative in progress to adapt ArgusLab for use on the iPad. Additionally, efforts have been made to integrate the Qt cross-platform development environment to potentially expand compatibility across Mac, PC, and Linux systems, enhancing its accessibility for a wider audience. This commitment to adaptability underscores the software's ongoing relevance in the field of molecular modeling.
  • 36
    FCS Express Reviews

    FCS Express

    De Novo Software

    $53 per month
    FCS Express™ simplifies the transition from raw data to visually appealing, presentation-ready outcomes more efficiently than any other flow cytometry software available. If you've experienced the hassle of transferring tables of data into another application merely for the sake of creating a more digestible visual representation, you're not alone. Managing your data through multiple programs, such as your flow cytometry software in conjunction with Microsoft Excel™ or GraphPad Prism™, can be frustrating when you wish everything were consolidated in one tool. The learning curve associated with flow cytometry software should not hinder your ability to derive meaningful insights from your data. FCS Express is crafted to resemble and function like familiar Microsoft Office™ applications, allowing you to leverage your existing skills and become proficient with the software right from the start. This seamless integration not only saves time but also enhances productivity, enabling users to focus on analysis rather than technicalities.
  • 37
    DrugPatentWatch Reviews

    DrugPatentWatch

    DrugPatentWatch

    $250 per month
    Business intelligence in the global biopharmaceutical sector focuses on drug patent dynamics and the entry of generics. It is essential to forecast future budget needs and proactively seek out generic alternatives. Analyzing the achievements of past patent challengers provides insights into the competitive landscape and informs research directions. This analysis plays a crucial role in guiding portfolio management strategies for upcoming drug development projects. Additionally, anticipating the expiration of patents on branded drugs, pinpointing potential generic suppliers, and managing branded drug inventory effectively are vital. Furthermore, acquiring detailed formulation and manufacturing data helps in identifying key formulators, repackagers, and relabelers to streamline operations and enhance market positioning. Understanding these elements can significantly bolster strategic decision-making in the biopharmaceutical industry.
  • 38
    BIOiSIM Reviews
    BIOiSIMTM represents a groundbreaking 'virtual drug development engine' that significantly enhances the drug development sector by effectively identifying drug compounds that are most likely to provide meaningful therapeutic benefits for various diseases or conditions. We provide an array of translational solutions that are tailored to meet the specific needs of your pre-clinical and clinical initiatives. Central to our offerings is the highly validated BIOiSIMTM platform, which supports the development of small molecules, large molecules, and viruses. This innovative platform is underpinned by extensive data derived from thousands of compounds across seven different species, resulting in a level of robustness that is uncommon in the field. Emphasizing human health outcomes, the heart of the platform features a translatability engine that seamlessly converts insights gained from different species. Importantly, the BIOiSIMTM platform can be deployed prior to the initiation of preclinical animal trials, facilitating earlier insights and potentially reducing the costs associated with outsourced experimentation. By integrating these advanced capabilities, we aim to streamline the drug development process and accelerate the journey from discovery to market.
  • 39
    Recursion Reviews
    We are a biotechnology firm in the clinical stage, dedicated to unraveling biological complexities through the integration of cutting-edge innovations spanning biology, chemistry, automation, machine learning, and engineering, all aimed at revolutionizing drug discovery. Our approach allows for enhanced precision in biological manipulation with advanced techniques like CRISPR genome editing and synthetic biology. We also achieve reliable automation for intricate laboratory processes at an unprecedented scale through the use of sophisticated robotics. By employing neural network architectures, we conduct iterative analyses and draw insights from extensive, intricate datasets generated in-house. Furthermore, we are boosting the adaptability of high-performance computing capabilities through cloud-based solutions. Our initiative harnesses new technologies to foster continuous learning cycles around our datasets, establishing us as a next-generation biopharmaceutical enterprise. This is achieved through a harmonious integration of hardware, software, and data, all dedicated to the industrialization of drug discovery. We are transforming the conventional drug discovery pipeline and boast one of the most extensive, diverse, and in-depth pipelines among technology-driven drug discovery companies. Ultimately, our mission is to enhance the efficiency and effectiveness of drug development, paving the way for breakthrough therapies.
  • 40
    adWATCH Reviews
    adWATCH - AE is a solution designed to aid pharmaceutical companies in handling and documenting adverse events that arise during clinical trials. It provides a quick and efficient way for reporters at clinics, hospitals, or investigative sites to create and oversee Adverse Event Reports (AERs), ensuring proper reporting to regulatory bodies and government organizations. An adverse effect refers to a harmful or undesirable reaction experienced by a patient due to medications or medical devices. The process of documenting adverse events necessitates thorough tracking of all medical complaint case details, which culminates in the creation of MedWatch reports, CIOMS reports, and other management documentation. With adWATCH - AE, researchers, physician investigators, Contract Research Organizations (CROs), clinical trial experts, and various health professionals can easily generate and submit AERs in compliance with FDA requirements, adhering to both MedWatch and CIOMS formats. This streamlined process not only enhances regulatory compliance but also improves patient safety oversight during clinical trials.
  • 41
    QSimulate Reviews
    QSimulate presents an array of quantum simulation platforms that harness the principles of quantum mechanics to address intricate, large-scale challenges in life sciences and materials science. The QSP Life platform introduces innovative quantum-enhanced techniques for drug discovery and optimization, facilitating pioneering quantum simulations of ligand-protein interactions that are relevant throughout the entire computational drug discovery journey. Meanwhile, the QUELO platform enables hybrid quantum/classical free energy calculations, empowering users to conduct relative free energy assessments via the free energy perturbation (FEP) method. Furthermore, QSimulate's advancements enable significant progress in quantum mechanics/molecular mechanics (QM/MM) simulations tailored for extensive protein modeling. In the realm of materials science, the QSP Materials platform opens up quantum mechanical simulations to a broader audience, allowing experimentalists to streamline complex workflows without requiring specialized expertise, ultimately fostering greater innovation in the field. This democratization of technology marks a pivotal shift in how researchers can approach and solve scientific problems.
  • 42
    BC Platforms Reviews
    BC platforms harnesses cutting-edge scientific advancements, innovative technological capabilities, and strategic alliances to transform drug discovery and tailor healthcare solutions. Our platform is modular and highly adaptable, designed for integrating healthcare data effectively. With an open analytics framework, we seamlessly merge the most recent innovative methods and technology advancements into a single, cohesive platform. We prioritize security, holding ISO 27001 certification alongside compliance with GDPR and HIPAA regulations. Our comprehensive product suite empowers a contemporary healthcare system to fully adopt personalized medicine approaches. Our scalable deployment options support everything from initial setups to expansive healthcare operations. By offering a unique end-to-end toolbox, we facilitate the expedited application of research findings in clinical settings. Moreover, we strive to minimize your risks, enhance the value of your pipeline, and advance your enterprise data strategy by overcoming data access challenges and enabling swift insights. In doing so, we aim to foster a health ecosystem that is both responsive and forward-thinking.
  • 43
    Fatigue Essentials Reviews

    Fatigue Essentials

    AppliedCAx

    $695 one-time payment
    Fatigue Essentials is a desktop software designed to streamline the process of structural fatigue analysis. This application offers an intuitive interface for performing stress-life evaluations, utilizing either traditional stress calculations or integrating with FEMAP™ to leverage finite element analysis results. The program is designed with a user-friendly tree structure that guides users through various stages of analysis, starting with selections related to loads, materials, and spectrum branches. Each section allows for different variations of analysis or methods of input. Users can view analysis results directly on the screen, which can be easily copied into reports or visualized as damage contour plots in FEMAP. It encompasses a wide range of engineering needs, featuring a classic mode that allows for manual input of stresses and a professional mode linked with FEMAP, which can read nodal stresses and generate damage contour visualizations. Additionally, users have the flexibility to choose between interactive input or file uploads for entering stresses and cycles, enhancing the application's versatility. Ultimately, Fatigue Essentials stands out as an essential tool for engineers engaged in fatigue analysis.
  • 44
    YASARA Reviews
    YASARA is a versatile molecular graphics, modeling, and simulation software that was introduced in 1993 and is compatible with Windows, Linux, MacOS, and Android platforms, designed to simplify the process of obtaining answers to your scientific inquiries. Featuring a user-friendly interface and stunning photorealistic visuals, it also accommodates budget-friendly virtual reality headsets, shutter glasses, and autostereoscopic displays, fostering an immersive experience that allows users to concentrate on their objectives while minimizing distractions from the software itself. At the core of YASARA is PVL (Portable Vector Language), an innovative development framework that delivers performance capabilities that far exceed those of conventional applications. This advanced framework empowers users to visualize even the most complex protein structures and facilitates genuine interactive real-time simulations with precise force fields on standard computing systems, while also leveraging GPU capabilities when available. By enabling users to manipulate molecules actively and engage with dynamic models instead of just viewing static images, YASARA represents a significant advancement in molecular modeling technology. This dynamic interaction not only enhances the learning experience but also encourages deeper exploration of molecular behavior.
  • 45
    Ascalaph Designer Reviews
    Ascalaph Designer is a versatile software designed for conducting molecular dynamic simulations. It integrates various implementations of molecular dynamics alongside classical and quantum mechanics methodologies from widely-used programs within a unified graphical interface. The software includes molecular geometry optimization utilizing conjugate gradient techniques. Molecular models are displayed in distinct windows, each equipped with dual camera views that enable simultaneous visualization from multiple angles and in various graphic representations. Users can easily open additional subwindows by adjusting the splitter located in the corner of each graphical display. By clicking an atom or bond with the left mouse button, users can slightly alter its color, and relevant information about the selected object is presented in the status bar. The wire-frame visualization style proves especially effective for large molecules, such as proteins, ensuring rapid rendering. Additionally, the CPK wire frame style effectively merges characteristics from several other visualization options, enhancing user experience. This program not only facilitates complex simulations but also significantly improves the analysis of molecular structures through its innovative display features.