LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
T5
We introduce T5, a model that transforms all natural language processing tasks into a consistent text-to-text format, ensuring that both inputs and outputs are text strings, unlike BERT-style models which are limited to providing either a class label or a segment of the input text. This innovative text-to-text approach enables us to utilize the same model architecture, loss function, and hyperparameter settings across various NLP tasks such as machine translation, document summarization, question answering, and classification, including sentiment analysis. Furthermore, T5's versatility extends to regression tasks, where it can be trained to output the textual form of a number rather than the number itself, showcasing its adaptability. This unified framework greatly simplifies the handling of diverse NLP challenges, promoting efficiency and consistency in model training and application.
Learn more
Teuken 7B
Teuken-7B is a multilingual language model that has been developed as part of the OpenGPT-X initiative, specifically tailored to meet the needs of Europe's varied linguistic environment. This model has been trained on a dataset where over half consists of non-English texts, covering all 24 official languages of the European Union, which ensures it performs well across these languages. A significant advancement in Teuken-7B is its unique multilingual tokenizer, which has been fine-tuned for European languages, leading to enhanced training efficiency and lower inference costs when compared to conventional monolingual tokenizers. Users can access two versions of the model: Teuken-7B-Base, which serves as the basic pre-trained version, and Teuken-7B-Instruct, which has received instruction tuning aimed at boosting its ability to respond to user requests. Both models are readily available on Hugging Face, fostering an environment of transparency and collaboration within the artificial intelligence community while also encouraging further innovation. The creation of Teuken-7B highlights a dedication to developing AI solutions that embrace and represent the rich diversity found across Europe.
Learn more