Best LLaMA Alternatives in 2024
Find the top alternatives to LLaMA currently available. Compare ratings, reviews, pricing, and features of LLaMA alternatives in 2024. Slashdot lists the best LLaMA alternatives on the market that offer competing products that are similar to LLaMA. Sort through LLaMA alternatives below to make the best choice for your needs
-
1
GPT-3 models are capable of understanding and generating natural language. There are four main models available, each with a different level of power and suitable for different tasks. Ada is the fastest and most capable model while Davinci is our most powerful. GPT-3 models are designed to be used in conjunction with the text completion endpoint. There are models that can be used with other endpoints. Davinci is the most versatile model family. It can perform all tasks that other models can do, often with less instruction. Davinci is the best choice for applications that require a deep understanding of the content. This includes summarizations for specific audiences and creative content generation. These higher capabilities mean that Davinci is more expensive per API call and takes longer to process than other models.
-
2
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. These models are now used by many users, and some even for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. It is vital that the academic community engages in order to make maximum progress towards addressing these pressing issues. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI's text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta's LLaMA 7B model. -
3
GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
-
4
GPT-3.5 is the next evolution to GPT 3 large language model, OpenAI. GPT-3.5 models are able to understand and generate natural languages. There are four main models available with different power levels that can be used for different tasks. The main GPT-3.5 models can be used with the text completion endpoint. There are models that can be used with other endpoints. Davinci is the most versatile model family. It can perform all tasks that other models can do, often with less instruction. Davinci is the best choice for applications that require a deep understanding of the content. This includes summarizations for specific audiences and creative content generation. These higher capabilities mean that Davinci is more expensive per API call and takes longer to process than other models.
-
5
GPT-NeoX
EleutherAI
FreeA model parallel autoregressive transformator implementation on GPUs based on the DeepSpeed Library. This repository contains EleutherAI’s library for training large language models on GPUs. Our current framework is based upon NVIDIA's Megatron Language Model, and has been enhanced with techniques from DeepSpeed, as well as some novel improvements. This repo is intended to be a central and accessible place for techniques to train large-scale autoregressive models and to accelerate research into large scale training. -
6
GPT-J
EleutherAI
FreeGPT-J, a cutting edge language model developed by EleutherAI, is a leading-edge language model. GPT-J's performance is comparable to OpenAI's GPT-3 model on a variety of zero-shot tasks. GPT-J, in particular, has shown that it can surpass GPT-3 at tasks relating to code generation. The latest version of this language model is GPT-J-6B and is built on a linguistic data set called The Pile. This dataset is publically available and contains 825 gibibytes worth of language data organized into 22 subsets. GPT-J has some similarities with ChatGPT. However, GPTJ is not intended to be a chatbot. Its primary function is to predict texts. Databricks made a major development in March 2023 when they introduced Dolly, an Apache-licensed model that follows instructions. -
7
Chinchilla
Google DeepMind
Chinchilla has a large language. Chinchilla has the same compute budget of Gopher, but 70B more parameters and 4x as much data. Chinchilla consistently and significantly outperforms Gopher 280B, GPT-3 175B, Jurassic-1 178B, and Megatron-Turing (530B) in a wide range of downstream evaluation tasks. Chinchilla also uses less compute to perform fine-tuning, inference and other tasks. This makes it easier for downstream users to use. Chinchilla reaches a high-level average accuracy of 67.5% for the MMLU benchmark. This is a greater than 7% improvement compared to Gopher. -
8
Galactica
Meta
Information overload is a major barrier to scientific progress. The explosion of scientific literature and data makes it harder to find useful insights among a vast amount of information. Search engines are used to access scientific knowledge today, but they cannot organize it. Galactica is an extensive language model which can store, combine, and reason about scientific information. We train using a large corpus of scientific papers, reference material and knowledge bases, among other sources. We outperform other models in a variety of scientific tasks. Galactica performs better than the latest GPT-3 on technical knowledge probes like LaTeX Equations by 68.2% to 49.0%. Galactica is also good at reasoning. It outperforms Chinchilla in mathematical MMLU with a score between 41.3% and 35.7%. And PaLM 540B in MATH, with a score between 20.4% and 8.8%. -
9
Dolly
Databricks
FreeDolly is an inexpensive LLM that demonstrates a surprising amount of the capabilities of ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly uses an open source model with 6 billion parameters from EleutherAI, which is modified to include new capabilities like brainstorming and text creation that were not present in the original. -
10
Cerebras-GPT
Cerebras
FreeThe training of state-of-the art language models is extremely difficult. They require large compute budgets, complex distributed computing techniques and deep ML knowledge. Few organizations are able to train large language models from scratch. The number of organizations that do not open source their results is increasing, even though they have the expertise and resources to do so. We at Cerebras believe in open access to the latest models. Cerebras is proud to announce that Cerebras GPT, a family GPT models with 111 million to thirteen billion parameters, has been released to the open-source community. These models are trained using the Chinchilla Formula and provide the highest accuracy within a given computing budget. Cerebras GPT has faster training times and lower training costs. It also consumes less power than any other publicly available model. -
11
MPT-7B
MosaicML
FreeIntroducing MPT-7B - the latest addition to our MosaicML Foundation Series. MPT-7B, a transformer that is trained from scratch using 1T tokens of code and text, is the latest entry in our MosaicML Foundation Series. It is open-source, available for commercial purposes, and has the same quality as LLaMA-7B. MPT-7B trained on the MosaicML Platform in 9.5 days, with zero human interaction at a cost $200k. You can now train, fine-tune and deploy your private MPT models. You can either start from one of our checkpoints, or you can start from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens! -
12
Llama 2
Meta
FreeThe next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2 -
13
FLAN-T5
Google
FreeFLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks. -
14
Ernie Bot
Baidu
Ernie Bot (Wenxin Yiyan), a Baidu conversational AI chatbot, is a new chatbot that can answer any type of question a user may have. -
15
Falcon-7B
Technology Innovation Institute (TII)
FreeFalcon-7B is a 7B parameter causal decoder model, built by TII. It was trained on 1,500B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-7B Falcon-7B? It outperforms similar open-source models, such as MPT-7B StableLM RedPajama, etc. It is a result of being trained using 1,500B tokens from RefinedWeb enhanced by curated corpora. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. -
16
Falcon-40B
Technology Innovation Institute (TII)
FreeFalcon-40B is a 40B parameter causal decoder model, built by TII. It was trained on 1,000B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-40B Falcon-40B is the best open source model available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. This is a raw model that should be finetuned to fit most uses. If you're looking for a model that can take generic instructions in chat format, we suggest Falcon-40B Instruct. -
17
MosaicML
MosaicML
With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven. -
18
OPT
Meta
The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model. -
19
PanGu-α
Huawei
PanGu-a was developed under MindSpore, and trained on 2048 Ascend AI processors. The MindSpore Auto-parallel parallelism strategy was implemented to scale the training task efficiently to 2048 processors. This includes data parallelism as well as op-level parallelism. We pretrain PanGu-a with 1.1TB of high-quality Chinese data collected from a variety of domains in order to enhance its generalization ability. We test the generation abilities of PanGua in different scenarios, including text summarizations, question answering, dialog generation, etc. We also investigate the effects of model scaling on the few shot performances across a wide range of Chinese NLP task. The experimental results show that PanGu-a is superior in performing different tasks with zero-shot or few-shot settings. -
20
Megatron-Turing
NVIDIA
Megatron-Turing Natural Language Generation Model (MT-NLG) is the largest and most powerful monolithic English language model. It has 530 billion parameters. This 105-layer transformer-based MTNLG improves on the previous state-of-the art models in zero, one, and few shot settings. It is unmatched in its accuracy across a wide range of natural language tasks, including Completion prediction and Reading comprehension. NVIDIA has announced an Early Access Program for its managed API service in MT-NLG Mode. This program will allow customers to experiment with, employ and apply a large language models on downstream language tasks. -
21
RedPajama
RedPajama
FreeGPT-4 and other foundation models have accelerated AI's development. The most powerful models, however, are closed commercial models or partially open. RedPajama aims to create a set leading, open-source models. Today, we're excited to announce that the first phase of this project is complete: the reproduction of LLaMA's training dataset of more than 1.2 trillion tokens. The most capable foundations models are currently closed behind commercial APIs. This limits research, customization and their use with sensitive information. If the open community can bridge the quality gap between closed and open models, fully open-source models could be the answer to these limitations. Recent progress has been made in this area. AI is in many ways having its Linux moment. Stable Diffusion demonstrated that open-source software can not only compete with commercial offerings such as DALL-E, but also lead to incredible creative results from community participation. -
22
PaLM
Google
PaLM API allows you to easily and safely build on top our best language models. We are currently making an efficient model, both in terms of size, and capabilities, available today. We will soon add more sizes. MakerSuite is an intuitive tool that allows you to quickly prototype ideas. Over time, it will include features for prompt engineering and synthetic data generation. It also supports custom-model tuning. All of this is supported by robust safety tools. Only a few developers have access to the PaLM API and MakerSuite in private preview today. Stay tuned for our waitlist. -
23
OpenLLaMA
OpenLLaMA
FreeOpenLLaMA, a permissively-licensed open source reproduction of Meta AI’s LLaMA 7B, is trained on the RedPajama data set. Our model weights are a drop-in replacement for LLaMA7B in existing implementations. We also offer a smaller 3B version of the LLaMA Model. -
24
Pythia
EleutherAI
FreePythia combines interpretationability analysis and scaling law to understand how knowledge evolves and develops during training with autoregressive transformators. -
25
Stable Beluga
Stability AI
FreeStability AI, in collaboration with its CarperAI Lab, announces Stable Beluga 1 (formerly codenamed FreeWilly) and its successor Stable Beluga 2 - two powerful, new Large Language Models. Both models show exceptional reasoning abilities across a variety of benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Stable Beluga 2 uses the LLaMA 270B foundation model for industry-leading performance. -
26
Stable LM
Stability AI
FreeStableLM: Stability AI language models StableLM builds upon our experience with open-sourcing previous language models in collaboration with EleutherAI. This nonprofit research hub. These models include GPTJ, GPTNeoX and the Pythia Suite, which were all trained on The Pile dataset. Cerebras GPT and Dolly-2 are two recent open-source models that continue to build upon these efforts. StableLM was trained on a new dataset that is three times bigger than The Pile and contains 1.5 trillion tokens. We will provide more details about the dataset at a later date. StableLM's richness allows it to perform well in conversational and coding challenges, despite the small size of its dataset (3-7 billion parameters, compared to GPT-3's 175 billion). The development of Stable LM 3B broadens the range of applications that are viable on the edge or on home PCs. This means that individuals and companies can now develop cutting-edge technologies with strong conversational capabilities – like creative writing assistance – while keeping costs low and performance high. -
27
Teuken 7B
OpenGPT-X
FreeTeuken-7B, a multilingual open source language model, was developed under the OpenGPT-X project. It is specifically designed to accommodate Europe's diverse linguistic landscape. It was trained on a dataset that included over 50% non-English text, covering all 24 official European Union languages, to ensure robust performance. Teuken-7B's custom multilingual tokenizer is a key innovation. It has been optimized for European languages and enhances training efficiency. The model comes in two versions: Teuken-7B Base, a pre-trained foundational model, and Teuken-7B Instruct, a model that has been tuned to better follow user prompts. Hugging Face makes both versions available, promoting transparency and cooperation within the AI community. The development of Teuken-7B demonstrates a commitment to create AI models that reflect Europe’s diversity. -
28
T5
Google
With T5, we propose re-framing all NLP into a unified format where the input and the output are always text strings. This is in contrast to BERT models which can only output a class label, or a span from the input. Our text-totext framework allows us use the same model and loss function on any NLP task. This includes machine translation, document summary, question answering and classification tasks. We can also apply T5 to regression by training it to predict a string representation of a numeric value instead of the actual number. -
29
mT5
Google
FreeMultilingual T5 is a massively pretrained text-totext transformer model that has been trained using a similar recipe to T5. This repo can used to reproduce the experiments described in the mT5 article. The mC4 corpus covers 101 languages. Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, and more. -
30
Vicuna
lmsys.org
FreeVicuna-13B, an open-source chatbot, is trained by fine-tuning LLaMA using user-shared conversations from ShareGPT. Vicuna-13B's preliminary evaluation using GPT-4, as a judge, shows that it achieves a quality of more than 90%* for OpenAI ChatGPT or Google Bard and outperforms other models such as LLaMA or Stanford Alpaca. Vicuna-13B costs around $300 to train. The online demo and the code, along with weights, are available to non-commercial users. -
31
Code Llama
Meta
FreeCode Llama, a large-language model (LLM), can generate code using text prompts. Code Llama, the most advanced publicly available LLM for code tasks, has the potential to improve workflows for developers and reduce the barrier for those learning to code. Code Llama can be used to improve productivity and educate programmers to create more robust, well documented software. Code Llama, a state-of the-art LLM, is capable of generating both code, and natural languages about code, based on both code and natural-language prompts. Code Llama can be used for free in research and commercial purposes. Code Llama is a new model that is built on Llama 2. It is available in 3 models: Code Llama is the foundational model of code; Codel Llama is a Python-specific language. Code Llama-Instruct is a finely tuned natural language instruction interpreter. -
32
Gemini was designed from the ground-up to be multimodal. It is highly efficient in tool and API integrations, and it is built to support future innovations like memory and planning. We're seeing multimodal capabilities that were not present in previous models. Gemini is our most flexible model to date -- it can run on anything from data centers to smartphones. Its cutting-edge capabilities will improve the way developers and enterprises build and scale AI. Gemini Ultra - Our largest and most capable model, designed for highly complex tasks. Gemini Pro is our best model to scale across a variety of tasks. Gemini Nano -- our most efficient model for on-device tasks. Gemini Flash - our experimental model is our workhorse with low latency, enhanced performance and built to power agentic experience.
-
33
Defense Llama
Scale AI
Scale AI is pleased to announce Defense Llama. This Large Language Model (LLM), built on Meta's Llama 3, is customized and fine-tuned for support of American national security missions. Defense Llama is available only in controlled U.S. Government environments within Scale Donovan. It empowers our servicemen and national security professionals by enabling them to apply the power generative AI for their unique use cases such as planning military operations or intelligence operations, and understanding adversary weaknesses. Defense Llama has been trained using a vast dataset that includes military doctrine, international human rights law, and relevant policy designed to align with Department of Defense (DoD), guidelines for armed conflicts, as well as DoD's Ethical Principles of Artificial Intelligence. This allows the model to respond with accurate, meaningful and relevant responses. Scale is proud that it can help U.S. national-security personnel use generative AI for defense in a safe and secure manner. -
34
LongLLaMA
LongLLaMA
FreeThis repository contains a research preview of LongLLaMA. It is a large language-model capable of handling contexts up to 256k tokens. LongLLaMA was built on the foundation of OpenLLaMA, and fine-tuned with the Focused Transformer method. LongLLaMA code was built on the foundation of Code Llama. We release a smaller base variant of the LongLLaMA (not instruction-tuned) on a permissive licence (Apache 2.0), and inference code that supports longer contexts for hugging face. Our model weights are a drop-in replacement for LLaMA (for short contexts up to 2048 tokens) in existing implementations. We also provide evaluation results, and comparisons with the original OpenLLaMA model. -
35
PygmalionAI
PygmalionAI
FreePygmalionAI, a community of open-source projects based upon EleutherAI’s GPT-J 6B models and Meta’s LLaMA model, was founded in 2009. Pygmalion AI is designed for roleplaying and chatting. The 7B variant of the Pygmalion AI is currently actively supported. It is based on Meta AI’s LLaMA AI model. Pygmalion's chat capabilities are superior to larger language models that require much more resources. Our curated datasets of high-quality data on roleplaying ensure that your bot is the best RP partner. The model weights as well as the code used to train the model are both open-source. You can modify/re-distribute them for any purpose you like. Pygmalion and other language models run on GPUs because they require fast memory and massive processing to produce coherent text at a reasonable speed. -
36
StarCoder
BigCode
FreeStarCoderBase and StarCoder are Large Language Models (Code LLMs), trained on permissively-licensed data from GitHub. This includes data from 80+ programming language, Git commits and issues, Jupyter Notebooks, and Git commits. We trained a 15B-parameter model for 1 trillion tokens, similar to LLaMA. We refined the StarCoderBase for 35B Python tokens. The result is a new model we call StarCoder. StarCoderBase is a model that outperforms other open Code LLMs in popular programming benchmarks. It also matches or exceeds closed models like code-cushman001 from OpenAI, the original Codex model which powered early versions GitHub Copilot. StarCoder models are able to process more input with a context length over 8,000 tokens than any other open LLM. This allows for a variety of interesting applications. By prompting the StarCoder model with a series dialogues, we allowed them to act like a technical assistant. -
37
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096. -
38
Giga ML
Giga ML
We have just launched the X1 large model series. Giga ML’s most powerful model can be used for pre-training, fine-tuning and on-prem deployment. We are Open AI compliant, so your existing integrations, such as long chain, llama index, and others, will work seamlessly. You can continue to pre-train LLM's using domain-specific databooks or docs, or company documents. The world of large-scale language models (LLMs), which offer unprecedented opportunities for natural language process across different domains, is rapidly expanding. Despite this, there are still some critical challenges that remain unresolved. Giga ML proudly introduces the X1 Large model 32k, a pioneering LLM solution on-premise that addresses these critical challenges. -
39
Phi-2
Microsoft
Phi-2 is a 2.7-billion-parameter language-model that shows outstanding reasoning and language-understanding capabilities. It represents the state-of-the art performance among language-base models with less than thirteen billion parameters. Phi-2 can match or even outperform models 25x larger on complex benchmarks, thanks to innovations in model scaling. Phi-2's compact size makes it an ideal playground for researchers. It can be used for exploring mechanistic interpretationability, safety improvements or fine-tuning experiments on a variety tasks. We have included Phi-2 in the Azure AI Studio catalog to encourage research and development of language models. -
40
Llama 3.2
Meta
FreeThere are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings. -
41
OLMo 2
Ai2
OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities. -
42
Aya
Cohere AI
Aya is an open-source, state-of-the art, massively multilingual large language research model (LLM), which covers 101 different languages. This is more than twice the number of languages that are covered by open-source models. Aya helps researchers unlock LLMs' powerful potential for dozens of cultures and languages that are largely ignored by the most advanced models available today. We open-source both the Aya Model, as well as the most comprehensive multilingual instruction dataset with 513 million words covering 114 different languages. This data collection contains rare annotations by native and fluent speakers from around the world. This ensures that AI technology is able to effectively serve a global audience who have had limited access up until now. -
43
Hermes 3
Nous Research
FreeHermes 3 contains advanced long-term context retention and multi-turn conversation capabilities, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Hermes 3 has advanced long-term contextual retention, multi-turn conversation capabilities, complex roleplaying, internal monologue, and enhanced agentic functions-calling. Our training data encourages the model in a very aggressive way to follow the system prompts and instructions exactly and in a highly adaptive manner. Hermes 3 was developed by fine-tuning Llama 3.0 8B, 70B and 405B and training with a dataset primarily containing synthetic responses. The model has a performance that is comparable to Llama 3.1, but with deeper reasoning and creative abilities. Hermes 3 is an instruct and tool-use model series with strong reasoning and creativity abilities. -
44
AI21 Studio
AI21 Studio
$29 per monthAI21 Studio provides API access to Jurassic-1 large-language-models. Our models are used to generate text and provide comprehension features in thousands upon thousands of applications. You can tackle any language task. Our Jurassic-1 models can follow natural language instructions and only need a few examples to adapt for new tasks. Our APIs are perfect for common tasks such as paraphrasing, summarization, and more. Superior results at a lower price without having to reinvent the wheel Do you need to fine-tune your custom model? Just 3 clicks away. Training is quick, affordable, and models can be deployed immediately. Embed an AI co-writer into your app to give your users superpowers. Features like paraphrasing, long-form draft generation, repurposing, and custom auto-complete can increase user engagement and help you to achieve success. -
45
Smaug-72B
Abacus
FreeSmaug 72B is an open-source large-language model (LLM), which is known for its key features. High Performance: It is currently ranked first on the Hugging face Open LLM leaderboard. This model has surpassed models such as GPT-3.5 across a range of benchmarks. This means that it excels in tasks such as understanding, responding to and generating text similar to human speech. Open Source: Smaug-72B, unlike many other advanced LLMs is available to anyone for free use and modification, fostering collaboration, innovation, and creativity in the AI community. Focus on Math and Reasoning: It excels at handling mathematical and reasoning tasks. This is attributed to the unique fine-tuning technologies developed by Abacus, the creators Smaug 72B. Based on Qwen 72B: This is a finely tuned version of another powerful LLM, called Qwen 72B, released by Alibaba. It further improves its capabilities. Smaug-72B is a significant advance in open-source AI. -
46
ChatGLM
Zhipu AI
FreeChatGLM-6B, a Chinese-English bilingual dialogue model based on General Language Model architecture (GLM), has 6.2 billion parameters. Users can deploy model quantization locally on consumer-grade graphic cards (only 6GB video memory required at INT4 quantization levels). ChatGLM-6B is based on technology similar to ChatGPT and optimized for Chinese dialogue and Q&A. After approximately 1T identifiers for Chinese and English bilingual training and supplemented with supervision and fine-tuning as well as feedback self-help and human feedback reinforcement learning, ChatGLM-6B, with 6.2 billion parameters, has been able generate answers that are in line with human preference. -
47
ERNIE 3.0 Titan
Baidu
Pre-trained models of language have achieved state-of the-art results for various Natural Language Processing (NLP). GPT-3 has demonstrated that scaling up language models pre-trained can further exploit their immense potential. Recently, a framework named ERNIE 3.0 for pre-training large knowledge enhanced models was proposed. This framework trained a model that had 10 billion parameters. ERNIE 3.0 performed better than the current state-of-the art models on a variety of NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. We also design a self supervised adversarial and a controllable model language loss to make ERNIE Titan generate credible texts. -
48
Llama 3.1
Meta
FreeOpen source AI model that you can fine-tune and distill anywhere. Our latest instruction-tuned models are available in 8B 70B and 405B version. Our open ecosystem allows you to build faster using a variety of product offerings that are differentiated and support your use cases. Choose between real-time or batch inference. Download model weights for further cost-per-token optimization. Adapt to your application, improve using synthetic data, and deploy on-prem. Use Llama components and extend the Llama model using RAG and zero shot tools to build agentic behavior. Use 405B high-quality data to improve specialized model for specific use cases. -
49
Palmyra LLM
Writer
$18 per monthPalmyra is an enterprise-ready suite of Large Language Models. These models are excellent at tasks like image analysis, question answering, and supporting over 30 languages. They can be fine-tuned for industries such as healthcare and finance. Palmyra models are notable for their top rankings in benchmarks such as Stanford HELM and PubMedQA. Palmyra Fin is the first model that passed the CFA Level III examination. Writer protects client data by not using it to train or modify models. They have a zero-data retention policy. Palmyra includes specialized models, such as Palmyra X 004, which has tool-calling abilities; Palmyra Med for healthcare; Palmyra Fin for finance; and Palmyra Vision for advanced image and video processing. These models are available via Writer's full stack generative AI platform which integrates graph based Retrieval augmented Generation (RAG). -
50
PanGu-Σ
Huawei
The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks.