Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Tensormesh
Tensormesh serves as an innovative caching layer designed for inference tasks involving large language models, allowing organizations to capitalize on intermediate computations, significantly minimize GPU consumption, and enhance both time-to-first-token and overall latency. By capturing and repurposing essential key-value cache states that would typically be discarded after each inference, it eliminates unnecessary computational efforts and achieves “up to 10x faster inference,” all while substantially reducing the strain on GPUs. The platform is versatile, accommodating both public cloud and on-premises deployments, and offers comprehensive observability, enterprise-level control, as well as SDKs/APIs and dashboards for seamless integration into existing inference frameworks, boasting compatibility with inference engines like vLLM right out of the box. Tensormesh prioritizes high performance at scale, enabling sub-millisecond repeated queries, and fine-tunes every aspect of inference from caching to computation, ensuring that organizations can maximize efficiency and responsiveness in their applications. In an increasingly competitive landscape, such enhancements provide a critical edge for companies aiming to leverage advanced language models effectively.
Learn more
Amazon SageMaker Model Deployment
Amazon SageMaker simplifies the process of deploying machine learning models for making predictions, also referred to as inference, ensuring optimal price-performance for a variety of applications. The service offers an extensive range of infrastructure and deployment options tailored to fulfill all your machine learning inference requirements. As a fully managed solution, it seamlessly integrates with MLOps tools, allowing you to efficiently scale your model deployments, minimize inference costs, manage models more effectively in a production environment, and alleviate operational challenges. Whether you require low latency (just a few milliseconds) and high throughput (capable of handling hundreds of thousands of requests per second) or longer-running inference for applications like natural language processing and computer vision, Amazon SageMaker caters to all your inference needs, making it a versatile choice for data-driven organizations. This comprehensive approach ensures that businesses can leverage machine learning without encountering significant technical hurdles.
Learn more