Best Inferable Alternatives in 2026
Find the top alternatives to Inferable currently available. Compare ratings, reviews, pricing, and features of Inferable alternatives in 2026. Slashdot lists the best Inferable alternatives on the market that offer competing products that are similar to Inferable. Sort through Inferable alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
783 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
LM-Kit.NET
LM-Kit
23 RatingsLM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide. -
3
fal
fal.ai
$0.00111 per secondFal represents a serverless Python environment enabling effortless cloud scaling of your code without the need for infrastructure management. It allows developers to create real-time AI applications with incredibly fast inference times, typically around 120 milliseconds. Explore a variety of pre-built models that offer straightforward API endpoints, making it easy to launch your own AI-driven applications. You can also deploy custom model endpoints, allowing for precise control over factors such as idle timeout, maximum concurrency, and automatic scaling. Utilize widely-used models like Stable Diffusion and Background Removal through accessible APIs, all kept warm at no cost to you—meaning you won’t have to worry about the expense of cold starts. Engage in conversations about our product and contribute to the evolution of AI technology. The platform can automatically expand to utilize hundreds of GPUs and retract back to zero when not in use, ensuring you only pay for compute resources when your code is actively running. To get started with fal, simply import it into any Python project and wrap your existing functions with its convenient decorator, streamlining the development process for AI applications. This flexibility makes fal an excellent choice for both novice and experienced developers looking to harness the power of AI. -
4
Mistral AI
Mistral AI
Free 1 RatingMistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry. -
5
potpie
potpie
$ 1 per monthPotpie is a collaborative open source platform designed for developers to craft AI agents specifically suited for their codebases, streamlining processes such as debugging, testing, system architecture, onboarding, code evaluations, and documentation. By converting your codebase into an extensive knowledge graph, Potpie equips its agents with a profound contextual understanding that enables them to execute engineering tasks with remarkable accuracy. The platform includes more than five pre-built agents, with some focusing on stack trace analysis and the generation of integration tests. Additionally, developers have the option to create personalized agents through straightforward prompts, ensuring easy incorporation into their established workflows. Potpie also features an intuitive chat interface and offers a VS Code extension for direct integration into development setups. With capabilities like multi-LLM support, developers can incorporate various AI models to enhance performance and adaptability, making Potpie an invaluable tool for modern software engineering. This versatility allows teams to optimize their overall productivity while benefiting from advanced automation techniques. -
6
Tensormesh
Tensormesh
Tensormesh serves as an innovative caching layer designed for inference tasks involving large language models, allowing organizations to capitalize on intermediate computations, significantly minimize GPU consumption, and enhance both time-to-first-token and overall latency. By capturing and repurposing essential key-value cache states that would typically be discarded after each inference, it eliminates unnecessary computational efforts and achieves “up to 10x faster inference,” all while substantially reducing the strain on GPUs. The platform is versatile, accommodating both public cloud and on-premises deployments, and offers comprehensive observability, enterprise-level control, as well as SDKs/APIs and dashboards for seamless integration into existing inference frameworks, boasting compatibility with inference engines like vLLM right out of the box. Tensormesh prioritizes high performance at scale, enabling sub-millisecond repeated queries, and fine-tunes every aspect of inference from caching to computation, ensuring that organizations can maximize efficiency and responsiveness in their applications. In an increasingly competitive landscape, such enhancements provide a critical edge for companies aiming to leverage advanced language models effectively. -
7
Lamini
Lamini
$99 per monthLamini empowers organizations to transform their proprietary data into advanced LLM capabilities, providing a platform that allows internal software teams to elevate their skills to match those of leading AI teams like OpenAI, all while maintaining the security of their existing systems. It ensures structured outputs accompanied by optimized JSON decoding, features a photographic memory enabled by retrieval-augmented fine-tuning, and enhances accuracy while significantly minimizing hallucinations. Additionally, it offers highly parallelized inference for processing large batches efficiently and supports parameter-efficient fine-tuning that scales to millions of production adapters. Uniquely, Lamini stands out as the sole provider that allows enterprises to safely and swiftly create and manage their own LLMs in any environment. The company harnesses cutting-edge technologies and research that contributed to the development of ChatGPT from GPT-3 and GitHub Copilot from Codex. Among these advancements are fine-tuning, reinforcement learning from human feedback (RLHF), retrieval-augmented training, data augmentation, and GPU optimization, which collectively enhance the capabilities of AI solutions. Consequently, Lamini positions itself as a crucial partner for businesses looking to innovate and gain a competitive edge in the AI landscape. -
8
Amazon SageMaker simplifies the process of deploying machine learning models for making predictions, also referred to as inference, ensuring optimal price-performance for a variety of applications. The service offers an extensive range of infrastructure and deployment options tailored to fulfill all your machine learning inference requirements. As a fully managed solution, it seamlessly integrates with MLOps tools, allowing you to efficiently scale your model deployments, minimize inference costs, manage models more effectively in a production environment, and alleviate operational challenges. Whether you require low latency (just a few milliseconds) and high throughput (capable of handling hundreds of thousands of requests per second) or longer-running inference for applications like natural language processing and computer vision, Amazon SageMaker caters to all your inference needs, making it a versatile choice for data-driven organizations. This comprehensive approach ensures that businesses can leverage machine learning without encountering significant technical hurdles.
-
9
FriendliAI
FriendliAI
$5.9 per hourFriendliAI serves as an advanced generative AI infrastructure platform that delivers rapid, efficient, and dependable inference solutions tailored for production settings. The platform is equipped with an array of tools and services aimed at refining the deployment and operation of large language models (LLMs) alongside various generative AI tasks on a large scale. Among its key features is Friendli Endpoints, which empowers users to create and implement custom generative AI models, thereby reducing GPU expenses and hastening AI inference processes. Additionally, it facilitates smooth integration with well-known open-source models available on the Hugging Face Hub, ensuring exceptionally fast and high-performance inference capabilities. FriendliAI incorporates state-of-the-art technologies, including Iteration Batching, the Friendli DNN Library, Friendli TCache, and Native Quantization, all of which lead to impressive cost reductions (ranging from 50% to 90%), a significant decrease in GPU demands (up to 6 times fewer GPUs), enhanced throughput (up to 10.7 times), and a marked decrease in latency (up to 6.2 times). With its innovative approach, FriendliAI positions itself as a key player in the evolving landscape of generative AI solutions. -
10
Nurix
Nurix
Nurix AI, located in Bengaluru, focuses on creating customized AI agents that aim to streamline and improve enterprise workflows across a range of industries, such as sales and customer support. Their platform is designed to integrate effortlessly with current enterprise systems, allowing AI agents to perform sophisticated tasks independently, deliver immediate responses, and make smart decisions without ongoing human intervention. One of the most remarkable aspects of their offering is a unique voice-to-voice model, which facilitates fast and natural conversations in various languages, thus enhancing customer engagement. Furthermore, Nurix AI provides specialized AI services for startups, delivering comprehensive solutions to develop and expand AI products while minimizing the need for large internal teams. Their wide-ranging expertise includes large language models, cloud integration, inference, and model training, guaranteeing that clients receive dependable and enterprise-ready AI solutions tailored to their specific needs. By committing to innovation and quality, Nurix AI positions itself as a key player in the AI landscape, supporting businesses in leveraging technology for greater efficiency and success. -
11
Tecton
Tecton
Deploy machine learning applications in just minutes instead of taking months. Streamline the conversion of raw data, create training datasets, and deliver features for scalable online inference effortlessly. By replacing custom data pipelines with reliable automated pipelines, you can save significant time and effort. Boost your team's productivity by enabling the sharing of features across the organization while standardizing all your machine learning data workflows within a single platform. With the ability to serve features at massive scale, you can trust that your systems will remain operational consistently. Tecton adheres to rigorous security and compliance standards. Importantly, Tecton is not a database or a processing engine; instead, it integrates seamlessly with your current storage and processing systems, enhancing their orchestration capabilities. This integration allows for greater flexibility and efficiency in managing your machine learning processes. -
12
AutoGen
Microsoft
FreeAn open-source programming framework designed for agent-based AI is available in the form of AutoGen. This framework presents a multi-agent conversational system that serves as a user-friendly abstraction layer, enabling the efficient creation of workflows involving large language models. AutoGen encompasses a diverse array of functional systems that cater to numerous applications across different fields and levels of complexity. Furthermore, it enhances the performance of inference APIs for large language models, offering opportunities to optimize efficiency and minimize expenses. By leveraging this framework, developers can streamline their projects while exploring innovative solutions in AI. -
13
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
14
NVIDIA DGX Cloud Serverless Inference provides a cutting-edge, serverless AI inference framework designed to expedite AI advancements through automatic scaling, efficient GPU resource management, multi-cloud adaptability, and effortless scalability. This solution enables users to reduce instances to zero during idle times, thereby optimizing resource use and lowering expenses. Importantly, there are no additional charges incurred for cold-boot startup durations, as the system is engineered to keep these times to a minimum. The service is driven by NVIDIA Cloud Functions (NVCF), which includes extensive observability capabilities, allowing users to integrate their choice of monitoring tools, such as Splunk, for detailed visibility into their AI operations. Furthermore, NVCF supports versatile deployment methods for NIM microservices, granting the ability to utilize custom containers, models, and Helm charts, thus catering to diverse deployment preferences and enhancing user flexibility. This combination of features positions NVIDIA DGX Cloud Serverless Inference as a powerful tool for organizations seeking to optimize their AI inference processes.
-
15
SiliconFlow
SiliconFlow
$0.04 per imageSiliconFlow is an advanced AI infrastructure platform tailored for developers, providing a comprehensive and scalable environment for executing, optimizing, and deploying both language and multimodal models. With its impressive speed, minimal latency, and high throughput, it ensures swift and dependable inference across various open-source and commercial models while offering versatile options such as serverless endpoints, dedicated computing resources, or private cloud solutions. The platform boasts a wide array of features, including integrated inference capabilities, fine-tuning pipelines, and guaranteed GPU access, all facilitated through an OpenAI-compatible API that comes equipped with built-in monitoring, observability, and intelligent scaling to optimize costs. For tasks that rely on diffusion, SiliconFlow includes the open-source OneDiff acceleration library, and its BizyAir runtime is designed to efficiently handle scalable multimodal workloads. Built with enterprise-level stability in mind, it incorporates essential features such as BYOC (Bring Your Own Cloud), strong security measures, and real-time performance metrics, making it an ideal choice for organizations looking to harness the power of AI effectively. Furthermore, SiliconFlow's user-friendly interface ensures that developers can easily navigate and leverage its capabilities to enhance their projects. -
16
VESSL AI
VESSL AI
$100 + compute/month Accelerate the building, training, and deployment of models at scale through a fully managed infrastructure that provides essential tools and streamlined workflows. Launch personalized AI and LLMs on any infrastructure in mere seconds, effortlessly scaling inference as required. Tackle your most intensive tasks with batch job scheduling, ensuring you only pay for what you use on a per-second basis. Reduce costs effectively by utilizing GPU resources, spot instances, and a built-in automatic failover mechanism. Simplify complex infrastructure configurations by deploying with just a single command using YAML. Adjust to demand by automatically increasing worker capacity during peak traffic periods and reducing it to zero when not in use. Release advanced models via persistent endpoints within a serverless architecture, maximizing resource efficiency. Keep a close eye on system performance and inference metrics in real-time, tracking aspects like worker numbers, GPU usage, latency, and throughput. Additionally, carry out A/B testing with ease by distributing traffic across various models for thorough evaluation, ensuring your deployments are continually optimized for performance. -
17
Baseten
Baseten
FreeBaseten is a cloud-native platform focused on delivering robust and scalable AI inference solutions for businesses requiring high reliability. It enables deployment of custom, open-source, and fine-tuned AI models with optimized performance across any cloud or on-premises infrastructure. The platform boasts ultra-low latency, high throughput, and automatic autoscaling capabilities tailored to generative AI tasks like transcription, text-to-speech, and image generation. Baseten’s inference stack includes advanced caching, custom kernels, and decoding techniques to maximize efficiency. Developers benefit from a smooth experience with integrated tooling and seamless workflows, supported by hands-on engineering assistance from the Baseten team. The platform supports hybrid deployments, enabling overflow between private and Baseten clouds for maximum performance. Baseten also emphasizes security, compliance, and operational excellence with 99.99% uptime guarantees. This makes it ideal for enterprises aiming to deploy mission-critical AI products at scale. -
18
Nscale
Nscale
Nscale is a specialized hyperscaler designed specifically for artificial intelligence, delivering high-performance computing that is fine-tuned for training, fine-tuning, and demanding workloads. Our vertically integrated approach in Europe spans from data centers to software solutions, ensuring unmatched performance, efficiency, and sustainability in all our offerings. Users can tap into thousands of customizable GPUs through our advanced AI cloud platform, enabling significant cost reductions and revenue growth while optimizing AI workload management. The platform is crafted to facilitate a smooth transition from development to production, whether employing Nscale's internal AI/ML tools or integrating your own. Users can also explore the Nscale Marketplace, which provides access to a wide array of AI/ML tools and resources that support effective and scalable model creation and deployment. Additionally, our serverless architecture allows for effortless and scalable AI inference, eliminating the hassle of infrastructure management. This system dynamically adjusts to demand, guaranteeing low latency and economical inference for leading generative AI models, ultimately enhancing user experience and operational efficiency. With Nscale, organizations can focus on innovation while we handle the complexities of AI infrastructure. -
19
NetApp AIPod
NetApp
NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market. -
20
Latent AI
Latent AI
We take the hard work out of AI processing on the edge. The Latent AI Efficient Inference Platform (LEIP) enables adaptive AI at edge by optimizing compute, energy, and memory without requiring modifications to existing AI/ML infrastructure or frameworks. LEIP is a fully-integrated modular workflow that can be used to build, quantify, and deploy edge AI neural network. Latent AI believes in a vibrant and sustainable future driven by the power of AI. Our mission is to enable the vast potential of AI that is efficient, practical and useful. We reduce the time to market with a Robust, Repeatable, and Reproducible workflow for edge AI. We help companies transform into an AI factory to make better products and services. -
21
UbiOps
UbiOps
UbiOps serves as a robust AI infrastructure platform designed to enable teams to efficiently execute their AI and ML workloads as dependable and secure microservices, all while maintaining their current workflows. In just a few minutes, you can integrate UbiOps effortlessly into your data science environment, thereby eliminating the tedious task of establishing and overseeing costly cloud infrastructure. Whether you're a start-up aiming to develop an AI product or part of a larger organization's data science unit, UbiOps provides a solid foundation for any AI or ML service you wish to implement. The platform allows you to scale your AI workloads in response to usage patterns, ensuring you only pay for what you use without incurring costs for time spent idle. Additionally, it accelerates both model training and inference by offering immediate access to powerful GPUs, complemented by serverless, multi-cloud workload distribution that enhances operational efficiency. By choosing UbiOps, teams can focus on innovation rather than infrastructure management, paving the way for groundbreaking AI solutions. -
22
Climb
Climb
Choose a model, and we will take care of the deployment, hosting, version control, and optimization, ultimately providing you with an inference endpoint for your use. This way, you can focus on your core tasks while we manage the technical details. -
23
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK serves as a robust software suite aimed at enhancing the performance of trained deep learning models for efficient inference on Qualcomm Cloud AI 100 accelerators. It accommodates a diverse array of AI frameworks like TensorFlow, PyTorch, and ONNX, which empowers developers to compile, optimize, and execute models with ease. Offering tools for onboarding, fine-tuning, and deploying models, the SDK streamlines the entire process from preparation to production rollout. In addition, it includes valuable resources such as model recipes, tutorials, and sample code to support developers in speeding up their AI projects. This ensures a seamless integration with existing infrastructures, promoting scalable and efficient AI inference solutions within cloud settings. By utilizing the Cloud AI SDK, developers are positioned to significantly boost the performance and effectiveness of their AI-driven applications, ultimately leading to more innovative solutions in the field. -
24
SuperDuperDB
SuperDuperDB
Effortlessly create and oversee AI applications without transferring your data through intricate pipelines or specialized vector databases. You can seamlessly connect AI and vector search directly with your existing database, allowing for real-time inference and model training. With a single, scalable deployment of all your AI models and APIs, you will benefit from automatic updates as new data flows in without the hassle of managing an additional database or duplicating your data for vector search. SuperDuperDB facilitates vector search within your current database infrastructure. You can easily integrate and merge models from Sklearn, PyTorch, and HuggingFace alongside AI APIs like OpenAI, enabling the development of sophisticated AI applications and workflows. Moreover, all your AI models can be deployed to compute outputs (inference) directly in your datastore using straightforward Python commands, streamlining the entire process. This approach not only enhances efficiency but also reduces the complexity usually involved in managing multiple data sources. -
25
Your software can see objects in video and images. A few dozen images can be used to train a computer vision model. This takes less than 24 hours. We support innovators just like you in applying computer vision. Upload files via API or manually, including images, annotations, videos, and audio. There are many annotation formats that we support and it is easy to add training data as you gather it. Roboflow Annotate was designed to make labeling quick and easy. Your team can quickly annotate hundreds upon images in a matter of minutes. You can assess the quality of your data and prepare them for training. Use transformation tools to create new training data. See what configurations result in better model performance. All your experiments can be managed from one central location. You can quickly annotate images right from your browser. Your model can be deployed to the cloud, the edge or the browser. Predict where you need them, in half the time.
-
26
kluster.ai
kluster.ai
$0.15per inputKluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects. -
27
NeuReality
NeuReality
NeuReality enhances the potential of artificial intelligence by providing an innovative solution that simplifies complexity, reduces costs, and minimizes power usage. Although several companies are working on Deep Learning Accelerators (DLAs) for implementation, NeuReality stands out by integrating a software platform specifically designed to optimize the management of distinct hardware infrastructures. It uniquely connects the AI inference infrastructure with the MLOps ecosystem, creating a seamless interaction. The organization has introduced a novel architectural design that harnesses the capabilities of DLAs effectively. This new architecture facilitates inference via hardware utilizing AI-over-fabric, an AI hypervisor, and AI-pipeline offload, paving the way for more efficient AI processing. By doing so, NeuReality not only addresses current challenges in AI deployment but also sets a new standard for future advancements in the field. -
28
Nebius Token Factory
Nebius
$0.02Nebius Token Factory is an advanced AI inference platform that enables the production of both open-source and proprietary AI models without the need for manual infrastructure oversight. It provides enterprise-level inference endpoints that ensure consistent performance, automatic scaling of throughput, and quick response times, even when faced with high request traffic. With a remarkable 99.9% uptime, it accommodates both unlimited and customized traffic patterns according to specific workload requirements, facilitating a seamless shift from testing to worldwide implementation. Supporting a diverse array of open-source models, including Llama, Qwen, DeepSeek, GPT-OSS, Flux, and many more, Nebius Token Factory allows teams to host and refine models via an intuitive API or dashboard interface. Users have the flexibility to upload LoRA adapters or fully fine-tuned versions directly, while still benefiting from the same enterprise-grade performance assurances for their custom models. This level of support ensures that organizations can confidently leverage AI technology to meet their evolving needs. -
29
Together AI
Together AI
$0.0001 per 1k tokensTogether AI offers a cloud platform purpose-built for developers creating AI-native applications, providing optimized GPU infrastructure for training, fine-tuning, and inference at unprecedented scale. Its environment is engineered to remain stable even as customers push workloads to trillions of tokens, ensuring seamless reliability in production. By continuously improving inference runtime performance and GPU utilization, Together AI delivers a cost-effective foundation for companies building frontier-level AI systems. The platform features a rich model library including open-source, specialized, and multimodal models for chat, image generation, video creation, and coding tasks. Developers can replace closed APIs effortlessly through OpenAI-compatible endpoints. Innovations such as ATLAS, FlashAttention, Flash Decoding, and Mixture of Agents highlight Together AI’s strong research contributions. Instant GPU clusters allow teams to scale from prototypes to distributed workloads in minutes. AI-native companies rely on Together AI to break performance barriers and accelerate time to market. -
30
Feast
Tecton
Enable your offline data to support real-time predictions seamlessly without the need for custom pipelines. Maintain data consistency between offline training and online inference to avoid discrepancies in results. Streamline data engineering processes within a unified framework for better efficiency. Teams can leverage Feast as the cornerstone of their internal machine learning platforms. Feast eliminates the necessity for dedicated infrastructure management, instead opting to utilize existing resources while provisioning new ones when necessary. If you prefer not to use a managed solution, you are prepared to handle your own Feast implementation and maintenance. Your engineering team is equipped to support both the deployment and management of Feast effectively. You aim to create pipelines that convert raw data into features within a different system and seek to integrate with that system. With specific needs in mind, you want to expand functionalities based on an open-source foundation. Additionally, this approach not only enhances your data processing capabilities but also allows for greater flexibility and customization tailored to your unique business requirements. -
31
SquareFactory
SquareFactory
A comprehensive platform for managing projects, models, and hosting, designed for organizations to transform their data and algorithms into cohesive, execution-ready AI strategies. Effortlessly build, train, and oversee models while ensuring security throughout the process. Create AI-driven products that can be accessed at any time and from any location. This approach minimizes the risks associated with AI investments and enhances strategic adaptability. It features fully automated processes for model testing, evaluation, deployment, scaling, and hardware load balancing, catering to both real-time low-latency high-throughput inference and longer batch inference. The pricing structure operates on a pay-per-second-of-use basis, including a service-level agreement (SLA) and comprehensive governance, monitoring, and auditing features. The platform boasts an intuitive interface that serves as a centralized hub for project management, dataset creation, visualization, and model training, all facilitated through collaborative and reproducible workflows. This empowers teams to work together seamlessly, ensuring that the development of AI solutions is efficient and effective. -
32
MaiaOS
Zyphra Technologies
Zyphra is a tech company specializing in artificial intelligence, headquartered in Palo Alto and expanding its footprint in both Montreal and London. We are in the process of developing MaiaOS, a sophisticated multimodal agent system that leverages cutting-edge research in hybrid neural network architectures (SSM hybrids), long-term memory, and reinforcement learning techniques. It is our conviction that the future of artificial general intelligence (AGI) will hinge on a blend of cloud-based and on-device strategies, with a notable trend towards local inference capabilities. MaiaOS is engineered with a deployment framework that optimizes inference efficiency, facilitating real-time intelligence applications. Our talented AI and product teams hail from prestigious organizations such as Google DeepMind, Anthropic, StabilityAI, Qualcomm, Neuralink, Nvidia, and Apple, bringing a wealth of experience to our initiatives. With comprehensive knowledge in AI models, learning algorithms, and systems infrastructure, we prioritize enhancing inference efficiency and maximizing AI silicon performance. At Zyphra, our mission is to make cutting-edge AI systems accessible to a wider audience, fostering innovation and collaboration in the field. We are excited about the potential societal impacts of our technology as we move forward. -
33
NetMind AI
NetMind AI
NetMind.AI is an innovative decentralized computing platform and AI ecosystem aimed at enhancing global AI development. It capitalizes on the untapped GPU resources available around the globe, making AI computing power affordable and accessible for individuals, businesses, and organizations of varying scales. The platform offers diverse services like GPU rentals, serverless inference, and a comprehensive AI ecosystem that includes data processing, model training, inference, and agent development. Users can take advantage of competitively priced GPU rentals and effortlessly deploy their models using on-demand serverless inference, along with accessing a broad range of open-source AI model APIs that deliver high-throughput and low-latency performance. Additionally, NetMind.AI allows contributors to integrate their idle GPUs into the network, earning NetMind Tokens (NMT) as a form of reward. These tokens are essential for facilitating transactions within the platform, enabling users to pay for various services, including training, fine-tuning, inference, and GPU rentals. Ultimately, NetMind.AI aims to democratize access to AI resources, fostering a vibrant community of contributors and users alike. -
34
KServe
KServe
FreeKServe is a robust model inference platform on Kubernetes that emphasizes high scalability and adherence to standards, making it ideal for trusted AI applications. This platform is tailored for scenarios requiring significant scalability and delivers a consistent and efficient inference protocol compatible with various machine learning frameworks. It supports contemporary serverless inference workloads, equipped with autoscaling features that can even scale to zero when utilizing GPU resources. Through the innovative ModelMesh architecture, KServe ensures exceptional scalability, optimized density packing, and smart routing capabilities. Moreover, it offers straightforward and modular deployment options for machine learning in production, encompassing prediction, pre/post-processing, monitoring, and explainability. Advanced deployment strategies, including canary rollouts, experimentation, ensembles, and transformers, can also be implemented. ModelMesh plays a crucial role by dynamically managing the loading and unloading of AI models in memory, achieving a balance between user responsiveness and the computational demands placed on resources. This flexibility allows organizations to adapt their ML serving strategies to meet changing needs efficiently. -
35
Simplismart
Simplismart
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness. -
36
Google Cloud Inference API
Google
Analyzing time-series data is crucial for the daily functions of numerous businesses. Common applications involve assessing consumer foot traffic and conversion rates for retailers, identifying anomalies in data, discovering real-time correlations within sensor information, and producing accurate recommendations. With the Cloud Inference API Alpha, businesses can derive real-time insights from their time-series datasets that they input. This tool provides comprehensive details about API query results, including the various groups of events analyzed, the total number of event groups, and the baseline probability associated with each event returned. It enables real-time streaming of data, facilitating the computation of correlations as events occur. Leveraging Google Cloud’s robust infrastructure and a comprehensive security strategy that has been fine-tuned over 15 years through various consumer applications ensures reliability. The Cloud Inference API is seamlessly integrated with Google Cloud Storage services, enhancing its functionality and user experience. This integration allows for more efficient data handling and analysis, positioning businesses to make informed decisions faster. -
37
Substrate
Substrate
$30 per monthSubstrate serves as the foundation for agentic AI, featuring sophisticated abstractions and high-performance elements, including optimized models, a vector database, a code interpreter, and a model router. It stands out as the sole compute engine crafted specifically to handle complex multi-step AI tasks. By merely describing your task and linking components, Substrate can execute it at remarkable speed. Your workload is assessed as a directed acyclic graph, which is then optimized; for instance, it consolidates nodes that are suitable for batch processing. The Substrate inference engine efficiently organizes your workflow graph, employing enhanced parallelism to simplify the process of integrating various inference APIs. Forget about asynchronous programming—just connect the nodes and allow Substrate to handle the parallelization of your workload seamlessly. Our robust infrastructure ensures that your entire workload operates within the same cluster, often utilizing a single machine, thereby eliminating delays caused by unnecessary data transfers and cross-region HTTP requests. This streamlined approach not only enhances efficiency but also significantly accelerates task execution times. -
38
EdgeCortix
EdgeCortix
Pushing the boundaries of AI processors and accelerating edge AI inference is essential in today’s technological landscape. In scenarios where rapid AI inference is crucial, demands for increased TOPS, reduced latency, enhanced area and power efficiency, and scalability are paramount, and EdgeCortix AI processor cores deliver precisely that. While general-purpose processing units like CPUs and GPUs offer a degree of flexibility for various applications, they often fall short when faced with the specific demands of deep neural network workloads. EdgeCortix was founded with a vision: to completely transform edge AI processing from its foundations. By offering a comprehensive AI inference software development environment, adaptable edge AI inference IP, and specialized edge AI chips for hardware integration, EdgeCortix empowers designers to achieve cloud-level AI performance directly at the edge. Consider the profound implications this advancement has for a myriad of applications, including threat detection, enhanced situational awareness, and the creation of more intelligent vehicles, ultimately leading to smarter and safer environments. -
39
GMI Cloud
GMI Cloud
$2.50 per hourGMI Cloud empowers teams to build advanced AI systems through a high-performance GPU cloud that removes traditional deployment barriers. Its Inference Engine 2.0 enables instant model deployment, automated scaling, and reliable low-latency execution for mission-critical applications. Model experimentation is made easier with a growing library of top open-source models, including DeepSeek R1 and optimized Llama variants. The platform’s containerized ecosystem, powered by the Cluster Engine, simplifies orchestration and ensures consistent performance across large workloads. Users benefit from enterprise-grade GPUs, high-throughput InfiniBand networking, and Tier-4 data centers designed for global reliability. With built-in monitoring and secure access management, collaboration becomes more seamless and controlled. Real-world success stories highlight the platform’s ability to cut costs while increasing throughput dramatically. Overall, GMI Cloud delivers an infrastructure layer that accelerates AI development from prototype to production. -
40
Atlas Cloud
Atlas Cloud
Atlas Cloud is an all-in-one AI inference platform designed to eliminate the complexity of managing multiple model providers. It enables developers to run text, image, video, audio, and multimodal AI workloads through a single, unified API. The platform offers access to more than 300 cutting-edge, production-ready models from industry-leading AI labs. Developers can instantly test, compare, and deploy models using the Atlas Playground without setup friction. Atlas Cloud delivers enterprise-grade performance with optimized infrastructure built for scale and reliability. Its pricing model helps reduce AI costs without sacrificing quality or throughput. Serverless inference, agent-based solutions, and GPU cloud services provide flexible deployment options. Built-in integrations and SDKs make implementation fast across multiple programming languages. Atlas Cloud maintains high uptime and consistent performance under heavy workloads. It empowers teams to move from experimentation to production with confidence. -
41
Tinfoil
Tinfoil
Tinfoil is a highly secure AI platform designed to ensure privacy by implementing zero-trust and zero-data-retention principles, utilizing open-source or customized models within secure hardware enclaves located in the cloud. This innovative approach offers the same data privacy guarantees typically associated with on-premises systems while also providing the flexibility and scalability of cloud solutions. All user interactions and inference tasks are executed within confidential-computing environments, which means that neither Tinfoil nor its cloud provider have access to or the ability to store your data. Tinfoil facilitates a range of functionalities, including private chat, secure data analysis, user-customized fine-tuning, and an inference API that is compatible with OpenAI. It efficiently handles tasks related to AI agents, private content moderation, and proprietary code models. Moreover, Tinfoil enhances user confidence with features such as public verification of enclave attestation, robust measures for "provable zero data access," and seamless integration with leading open-source models, making it a comprehensive solution for data privacy in AI. Ultimately, Tinfoil positions itself as a trustworthy partner in embracing the power of AI while prioritizing user confidentiality. -
42
Semantic Kernel
Microsoft
FreeSemantic Kernel is an open-source development toolkit that facilitates the creation of AI agents and the integration of cutting-edge AI models into applications written in C#, Python, or Java. This efficient middleware accelerates the deployment of robust enterprise solutions. Companies like Microsoft and other Fortune 500 firms are taking advantage of Semantic Kernel's flexibility, modularity, and observability. With built-in security features such as telemetry support, hooks, and filters, developers can confidently provide responsible AI solutions at scale. The support for versions 1.0 and above across C#, Python, and Java ensures reliability and a commitment to maintaining non-breaking changes. Existing chat-based APIs can be effortlessly enhanced to include additional modalities such as voice and video, making the toolkit highly adaptable. Semantic Kernel is crafted to be future-proof, ensuring seamless integration with the latest AI models as technology evolves, thus maintaining its relevance in the rapidly changing landscape of artificial intelligence. This forward-thinking design empowers developers to innovate without fear of obsolescence. -
43
Outspeed
Outspeed
Outspeed delivers advanced networking and inference capabilities designed to facilitate the rapid development of voice and video AI applications in real-time. This includes AI-driven speech recognition, natural language processing, and text-to-speech technologies that power intelligent voice assistants, automated transcription services, and voice-operated systems. Users can create engaging interactive digital avatars for use as virtual hosts, educational tutors, or customer support representatives. The platform supports real-time animation and fosters natural conversations, enhancing the quality of digital interactions. Additionally, it offers real-time visual AI solutions for various applications, including quality control, surveillance, contactless interactions, and medical imaging assessments. With the ability to swiftly process and analyze video streams and images with precision, it excels in producing high-quality results. Furthermore, the platform enables AI-based content generation, allowing developers to create extensive and intricate digital environments efficiently. This feature is particularly beneficial for game development, architectural visualizations, and virtual reality scenarios. Adapt's versatile SDK and infrastructure further empower users to design custom multimodal AI solutions by integrating different AI models, data sources, and interaction methods, paving the way for groundbreaking applications. The combination of these capabilities positions Outspeed as a leader in the AI technology landscape. -
44
Amazon EC2 Inf1 Instances
Amazon
$0.228 per hourAmazon EC2 Inf1 instances are specifically designed to provide efficient, high-performance machine learning inference at a competitive cost. They offer an impressive throughput that is up to 2.3 times greater and a cost that is up to 70% lower per inference compared to other EC2 offerings. Equipped with up to 16 AWS Inferentia chips—custom ML inference accelerators developed by AWS—these instances also incorporate 2nd generation Intel Xeon Scalable processors and boast networking bandwidth of up to 100 Gbps, making them suitable for large-scale machine learning applications. Inf1 instances are particularly well-suited for a variety of applications, including search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers have the advantage of deploying their ML models on Inf1 instances through the AWS Neuron SDK, which is compatible with widely-used ML frameworks such as TensorFlow, PyTorch, and Apache MXNet, enabling a smooth transition with minimal adjustments to existing code. This makes Inf1 instances not only powerful but also user-friendly for developers looking to optimize their machine learning workloads. The combination of advanced hardware and software support makes them a compelling choice for enterprises aiming to enhance their AI capabilities. -
45
Deep Infra
Deep Infra
$0.70 per 1M input tokens 1 RatingExperience a robust, self-service machine learning platform that enables you to transform models into scalable APIs with just a few clicks. Create an account with Deep Infra through GitHub or log in using your GitHub credentials. Select from a vast array of popular ML models available at your fingertips. Access your model effortlessly via a straightforward REST API. Our serverless GPUs allow for quicker and more cost-effective production deployments than building your own infrastructure from scratch. We offer various pricing models tailored to the specific model utilized, with some language models available on a per-token basis. Most other models are charged based on the duration of inference execution, ensuring you only pay for what you consume. There are no long-term commitments or upfront fees, allowing for seamless scaling based on your evolving business requirements. All models leverage cutting-edge A100 GPUs, specifically optimized for high inference performance and minimal latency. Our system dynamically adjusts the model's capacity to meet your demands, ensuring optimal resource utilization at all times. This flexibility supports businesses in navigating their growth trajectories with ease.