What Integrates with Google Cloud Dataproc?
Find out what Google Cloud Dataproc integrations exist in 2025. Learn what software and services currently integrate with Google Cloud Dataproc, and sort them by reviews, cost, features, and more. Below is a list of products that Google Cloud Dataproc currently integrates with:
-
1
Google Cloud Platform
Google
Free ($300 in free credits) 55,697 RatingsGoogle Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging. -
2
New Relic
New Relic
Free 2,556 RatingsAround 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability. -
3
Vertex AI
Google
Free ($300 in free credits) 673 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
4
Google Cloud BigQuery
Google
Free ($300 in free credits) 1,730 RatingsBigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently. -
5
Kubernetes
Kubernetes
Free 1 RatingKubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments. -
6
Immuta
Immuta
Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals. -
7
Ascend
Ascend
$0.98 per DFCAscend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams. -
8
Vertex AI Notebooks
Google
$10 per GBVertex AI Notebooks offers a comprehensive, end-to-end solution for machine learning development within Google Cloud. It combines the power of Colab Enterprise and Vertex AI Workbench to give data scientists and developers the tools to accelerate model training and deployment. This fully managed platform provides seamless integration with BigQuery, Dataproc, and other Google Cloud services, enabling efficient data exploration, visualization, and advanced ML model development. With built-in features like automated infrastructure management, users can focus on model building without worrying about backend maintenance. Vertex AI Notebooks also supports collaborative workflows, making it ideal for teams to work on complex AI projects together. -
9
Google Cloud GPUs
Google
$0.160 per GPUAccelerate computational tasks such as those found in machine learning and high-performance computing (HPC) with a diverse array of GPUs suited for various performance levels and budget constraints. With adaptable pricing and customizable machines, you can fine-tune your setup to enhance your workload efficiency. Google Cloud offers high-performance GPUs ideal for machine learning, scientific analyses, and 3D rendering. The selection includes NVIDIA K80, P100, P4, T4, V100, and A100 GPUs, providing a spectrum of computing options tailored to meet different cost and performance requirements. You can effectively balance processor power, memory capacity, high-speed storage, and up to eight GPUs per instance to suit your specific workload needs. Enjoy the advantage of per-second billing, ensuring you only pay for the resources consumed during usage. Leverage GPU capabilities on Google Cloud Platform, where you benefit from cutting-edge storage, networking, and data analytics solutions. Compute Engine allows you to easily integrate GPUs into your virtual machine instances, offering an efficient way to enhance processing power. Explore the potential uses of GPUs and discover the various types of GPU hardware available to elevate your computational projects. -
10
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
11
Google Cloud Dataplex
Google
$0.060 per hourGoogle Cloud's Dataplex serves as an advanced data fabric that empowers organizations to efficiently discover, manage, monitor, and govern their data across various platforms, including data lakes, warehouses, and marts, while maintaining uniform controls that ensure access to reliable data and facilitate large-scale analytics and AI initiatives. By offering a cohesive interface for data management, Dataplex streamlines processes like data discovery, classification, and metadata enhancement for diverse data types, whether structured, semi-structured, or unstructured, both within Google Cloud and external environments. It organizes data logically into business-relevant domains through lakes and data zones, making data curation, tiering, and archiving more straightforward. With its centralized security and governance features, Dataplex supports effective policy management, robust monitoring, and thorough auditing across fragmented data silos, thereby promoting distributed data ownership while ensuring global oversight. Furthermore, the platform includes automated data quality assessments and lineage tracking, which enhance the reliability and traceability of data, ensuring organizations can trust their data-driven decisions. By integrating these functionalities, Dataplex not only simplifies data management but also enhances collaboration within teams focused on analytics and AI. -
12
Pepperdata
Pepperdata, Inc.
Pepperdata autonomous, application-level cost optimization delivers 30-47% greater cost savings for data-intensive workloads such as Apache Spark on Amazon EMR and Amazon EKS with no application changes. Using patented algorithms, Pepperdata Capacity Optimizer autonomously optimizes CPU and memory in real time with no application code changes. Pepperdata automatically analyzes resource usage in real time, identifying where more work can be done, enabling the scheduler to add tasks to nodes with available resources and spin up new nodes only when existing nodes are fully utilized. The result: CPU and memory are autonomously and continuously optimized, without delay and without the need for recommendations to be applied, and the need for ongoing manual tuning is safely eliminated. Pepperdata pays for itself, immediately decreasing instance hours/waste, increasing Spark utilization, and freeing developers from manual tuning to focus on innovation. -
13
Google Cloud Profiler
Google
Assessing the performance of production systems is widely recognized as a challenging task. Efforts to evaluate performance in testing environments often fail to capture the true strain present in a production setting. While micro-benchmarking certain components of your application can sometimes be done, it generally does not reflect the actual workload and behavior of a production system effectively. Continuous profiling of production environments serves as a valuable method for identifying how resources such as CPU and memory are utilized during the service's operation. However, this profiling process introduces its own overhead: to be a viable means of uncovering resource usage patterns, the additional burden must remain minimal. Cloud Profiler emerges as a solution, offering a statistical, low-overhead profiling tool that continuously collects data on CPU usage and memory allocations from your live applications. This tool effectively connects that data back to the specific source code that produced it, allowing for better insights into resource utilization. By utilizing such a profiler, developers can optimize their applications while maintaining system performance. -
14
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
15
Qubole
Qubole
Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements. -
16
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
17
Syntasa
Syntasa
Syntasa introduces a revolutionary web application designed specifically for digital experts, allowing teams to seamlessly integrate first-party behavioral data with enterprise information. This self-service platform empowers users to create and implement tailored models, operate within a private cloud environment, and engage across multiple channels, enhancing the overall digital experience. With its user-friendly interface, Syntasa makes it easier than ever for digital professionals to harness the power of their data. -
18
IBM Databand
IBM
Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations. -
19
Tokern
Tokern
Tokern offers an open-source suite designed for data governance, specifically tailored for databases and data lakes. This user-friendly toolkit facilitates the collection, organization, and analysis of metadata from data lakes, allowing users to execute quick tasks via a command-line application or run it as a service for ongoing metadata collection. Users can delve into aspects like data lineage, access controls, and personally identifiable information (PII) datasets, utilizing reporting dashboards or Jupyter notebooks for programmatic analysis. As a comprehensive solution, Tokern aims to enhance your data's return on investment, ensure compliance with regulations such as HIPAA, CCPA, and GDPR, and safeguard sensitive information against insider threats seamlessly. It provides centralized management for metadata related to users, datasets, and jobs, which supports various other data governance functionalities. With the capability to track Column Level Data Lineage for platforms like Snowflake, AWS Redshift, and BigQuery, users can construct lineage from query histories or ETL scripts. Additionally, lineage exploration can be achieved through interactive graphs or programmatically via APIs or SDKs, offering a versatile approach to understanding data flow. Overall, Tokern empowers organizations to maintain robust data governance while navigating complex regulatory landscapes. -
20
Privacera
Privacera
Multi-cloud data security with a single pane of glass Industry's first SaaS access governance solution. Cloud is fragmented and data is scattered across different systems. Sensitive data is difficult to access and control due to limited visibility. Complex data onboarding hinders data scientist productivity. Data governance across services can be manual and fragmented. It can be time-consuming to securely move data to the cloud. Maximize visibility and assess the risk of sensitive data distributed across multiple cloud service providers. One system that enables you to manage multiple cloud services' data policies in a single place. Support RTBF, GDPR and other compliance requests across multiple cloud service providers. Securely move data to the cloud and enable Apache Ranger compliance policies. It is easier and quicker to transform sensitive data across multiple cloud databases and analytical platforms using one integrated system. -
21
Ternary
Ternary
Ternary stands out as the first native FinOps tool designed specifically for optimizing cloud costs within Google Cloud. It empowers users to make informed financial choices, ensuring a culture of accountability, collaboration, and trust between finance and engineering departments. FinOps serves as a framework for overseeing the fluctuating expenses associated with cloud services, incorporating a blend of systems, best practices, and cultural shifts that maximize the value derived from every dollar allocated to the cloud. Ternary is equipped to assist organizations at any phase of their FinOps journey, developing tools that bridge the gap between finance and engineering through features rooted in FinOps principles. This innovative platform provides essential visibility and context, fostering collaboration between teams, while its workflows are designed to promote accountability. By enabling organizations to easily monitor, prioritize, and track cost optimizations to completion, Ternary enhances overall financial management efficiency across the board. As businesses increasingly rely on cloud solutions, Ternary’s role in facilitating effective financial practices becomes ever more critical. -
22
Pantomath
Pantomath
Organizations are increasingly focused on becoming more data-driven, implementing dashboards, analytics, and data pipelines throughout the contemporary data landscape. However, many organizations face significant challenges with data reliability, which can lead to misguided business decisions and a general mistrust in data that negatively affects their financial performance. Addressing intricate data challenges is often a labor-intensive process that requires collaboration among various teams, all of whom depend on informal knowledge to painstakingly reverse engineer complex data pipelines spanning multiple platforms in order to pinpoint root causes and assess their implications. Pantomath offers a solution as a data pipeline observability and traceability platform designed to streamline data operations. By continuously monitoring datasets and jobs within the enterprise data ecosystem, it provides essential context for complex data pipelines by generating automated cross-platform technical pipeline lineage. This automation not only enhances efficiency but also fosters greater confidence in data-driven decision-making across the organization. -
23
definity
definity
Manage and oversee all operations of your data pipelines without requiring any code modifications. Keep an eye on data flows and pipeline activities to proactively avert outages and swiftly diagnose problems. Enhance the efficiency of pipeline executions and job functionalities to cut expenses while adhering to service level agreements. Expedite code rollouts and platform enhancements while ensuring both reliability and performance remain intact. Conduct data and performance evaluations concurrently with pipeline operations, including pre-execution checks on input data. Implement automatic preemptions of pipeline executions when necessary. The definity solution alleviates the workload of establishing comprehensive end-to-end coverage, ensuring protection throughout every phase and aspect. By transitioning observability to the post-production stage, definity enhances ubiquity, broadens coverage, and minimizes manual intervention. Each definity agent operates seamlessly with every pipeline, leaving no trace behind. Gain a comprehensive perspective on data, pipelines, infrastructure, lineage, and code for all data assets, allowing for real-time detection and the avoidance of asynchronous verifications. Additionally, it can autonomously preempt executions based on input evaluations, providing an extra layer of oversight. -
24
Unravel
Unravel Data
Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making. -
25
Collibra
Collibra
The Collibra Data Intelligence Cloud serves as your comprehensive platform for engaging with data, featuring an exceptional catalog, adaptable governance, ongoing quality assurance, and integrated privacy measures. Empower your teams with a premier data catalog that seamlessly merges governance, privacy, and quality controls. Elevate efficiency by enabling teams to swiftly discover, comprehend, and access data from various sources, business applications, BI, and data science tools all within a unified hub. Protect your data's privacy by centralizing, automating, and streamlining workflows that foster collaboration, implement privacy measures, and comply with international regulations. Explore the complete narrative of your data with Collibra Data Lineage, which automatically delineates the connections between systems, applications, and reports, providing a contextually rich perspective throughout the organization. Focus on the most critical data while maintaining confidence in its relevance, completeness, and reliability, ensuring that your organization thrives in a data-driven world. By leveraging these capabilities, you can transform your data management practices and drive better decision-making across the board.
- Previous
- You're on page 1
- Next