Best Apache Flink Alternatives in 2025
Find the top alternatives to Apache Flink currently available. Compare ratings, reviews, pricing, and features of Apache Flink alternatives in 2025. Slashdot lists the best Apache Flink alternatives on the market that offer competing products that are similar to Apache Flink. Sort through Apache Flink alternatives below to make the best choice for your needs
-
1
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
2
Arroyo
Arroyo
Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications. -
3
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
4
Apache Gobblin
Apache Software Foundation
A framework for distributed data integration that streamlines essential functions of Big Data integration, including data ingestion, replication, organization, and lifecycle management, is designed for both streaming and batch data environments. It operates as a standalone application on a single machine and can also function in an embedded mode. Additionally, it is capable of executing as a MapReduce application across various Hadoop versions and offers compatibility with Azkaban for initiating MapReduce jobs. In standalone cluster mode, it features primary and worker nodes, providing high availability and the flexibility to run on bare metal systems. Furthermore, it can function as an elastic cluster in the public cloud, maintaining high availability in this setup. Currently, Gobblin serves as a versatile framework for creating various data integration applications, such as ingestion and replication. Each application is usually set up as an independent job and managed through a scheduler like Azkaban, allowing for organized execution and management of data workflows. This adaptability makes Gobblin an appealing choice for organizations looking to enhance their data integration processes. -
5
Apache Beam
Apache Software Foundation
Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies. -
6
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
7
Apache Heron
Apache Software Foundation
Heron incorporates numerous architectural enhancements that lead to significant efficiency improvements. It maintains API compatibility with Apache Storm, ensuring that migrating to Heron can be achieved without any modifications to existing code. The platform simplifies the debugging process and facilitates the rapid identification of issues within topologies, promoting quicker iteration during the development phase. With its user interface, Heron provides a visual representation of each topology, enabling users to pinpoint hot spots and access detailed counters for monitoring progress and resolving issues. Furthermore, Heron boasts remarkable scalability, capable of handling a vast number of components for each topology while also supporting the deployment and management of numerous topologies simultaneously. This combination of features makes Heron an attractive choice for developers looking to optimize their stream processing workflows. -
8
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
9
Apache Pinot
Apache Corporation
Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues. -
10
RisingWave
RisingWave
$200/month RisingWave is an open-source distributed SQL streaming database released under Apache 2.0 license. RisingWave is PostgreSQL-compatible, and allows users to process streaming data using standard SQL. Written in Rust and designed with cloud-native architecture, RisingWave can achieve 10X better performance and cost efficiency compared to conventional stream processing systems. RisingWave Cloud is a fully managed cloud service. Users can leverage RisingWave Cloud to process streaming data and serve analytical queries at ease. -
11
Apache Storm
Apache Software Foundation
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available. -
12
Timeplus
Timeplus
$199 per monthTimeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency. -
13
Materialize
Materialize
$0.98 per hourMaterialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks. -
14
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
15
ksqlDB
Confluent
With your data now actively flowing, it's essential to extract meaningful insights from it. Stream processing allows for immediate analysis of your data streams, though establishing the necessary infrastructure can be a daunting task. To address this challenge, Confluent has introduced ksqlDB, a database specifically designed for applications that require stream processing. By continuously processing data streams generated across your organization, you can turn your data into actionable insights right away. ksqlDB features an easy-to-use syntax that facilitates quick access to and enhancement of data within Kafka, empowering development teams to create real-time customer experiences and meet operational demands driven by data. This platform provides a comprehensive solution for gathering data streams, enriching them, and executing queries on newly derived streams and tables. As a result, you will have fewer infrastructure components to deploy, manage, scale, and secure. By minimizing the complexity in your data architecture, you can concentrate more on fostering innovation and less on technical maintenance. Ultimately, ksqlDB transforms the way businesses leverage their data for growth and efficiency. -
16
Hitachi Streaming Data Platform
Hitachi
The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur. -
17
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
18
WarpStream
WarpStream
$2,987 per monthWarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure. -
19
Amazon Managed Service for Apache Flink
Amazon
$0.11 per hourA vast number of users leverage Amazon Managed Service for Apache Flink to execute their stream processing applications. This service allows you to analyze and transform streaming data in real-time through Apache Flink while seamlessly integrating with other AWS offerings. There is no need to manage servers or clusters, nor is there a requirement to establish computing and storage infrastructure. You are billed solely for the resources you consume. You can create and operate Apache Flink applications without the hassle of infrastructure setup and resource management. Experience the capability to process vast amounts of data at incredible speeds with subsecond latencies, enabling immediate responses to events. With Multi-AZ deployments and APIs for application lifecycle management, you can deploy applications that are both highly available and durable. Furthermore, you can develop solutions that efficiently transform and route data to services like Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service, among others, enhancing your application's functionality and reach. This service simplifies the complexities of stream processing, allowing developers to focus on building innovative solutions. -
20
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
21
The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
-
22
Amazon Kinesis
Amazon
Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise. -
23
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management. -
24
IBM Streams
IBM
1 RatingIBM Streams analyzes a diverse array of streaming data, including unstructured text, video, audio, geospatial data, and sensor inputs, enabling organizations to identify opportunities and mitigate risks while making swift decisions. By leveraging IBM® Streams, users can transform rapidly changing data into meaningful insights. This platform evaluates various forms of streaming data, empowering organizations to recognize trends and threats as they arise. When integrated with other capabilities of IBM Cloud Pak® for Data, which is founded on a flexible and open architecture, it enhances the collaborative efforts of data scientists in developing models to apply to stream flows. Furthermore, it facilitates the real-time analysis of vast datasets, ensuring that deriving actionable value from your data has never been more straightforward. With these tools, organizations can harness the full potential of their data streams for improved outcomes. -
25
Redpanda
Redpanda Data
Introducing revolutionary data streaming features that enable unparalleled customer experiences. The Kafka API and its ecosystem are fully compatible with Redpanda, which boasts predictable low latencies and ensures zero data loss. Redpanda is designed to outperform Kafka by up to ten times, offering enterprise-level support and timely hotfixes. It also includes automated backups to S3 or GCS, providing a complete escape from the routine operations associated with Kafka. Additionally, it supports both AWS and GCP environments, making it a versatile choice for various cloud platforms. Built from the ground up for ease of installation, Redpanda allows for rapid deployment of streaming services. Once you witness its incredible capabilities, you can confidently utilize its advanced features in a production setting. We take care of provisioning, monitoring, and upgrades without requiring access to your cloud credentials, ensuring that sensitive data remains within your environment. Your streaming infrastructure will be provisioned, operated, and maintained seamlessly, with customizable instance types available to suit your specific needs. As your requirements evolve, expanding your cluster is straightforward and efficient, allowing for sustainable growth. -
26
Confluent
Confluent
Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented. -
27
Informatica Data Engineering Streaming
Informatica
Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before. -
28
Spark Streaming
Apache Software Foundation
Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently. -
29
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
30
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
31
Embiot
Telchemy
Embiot®, a compact, high-performance IoT analytics software agent that can be used for smart sensor and IoT gateway applications, is available. This edge computing application can be integrated directly into devices, smart sensor and gateways but is powerful enough to calculate complex analytics using large amounts of raw data at high speeds. Embiot internally uses a stream processing model in order to process sensor data that arrives at different times and in different order. It is easy to use with its intuitive configuration language, rich in math, stats, and AI functions. This makes it quick and easy to solve any analytics problems. Embiot supports many input methods, including MODBUS and MQTT, REST/XML and REST/JSON. Name/Value, CSV, and REST/XML are all supported. Embiot can send output reports to multiple destinations simultaneously in REST, custom text and MQTT formats. Embiot supports TLS on select input streams, HTTP, and MQTT authentication for security. -
32
Amazon Data Firehose
Amazon
$0.075 per monthEffortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams. -
33
Amazon MSK
Amazon
$0.0543 per hourAmazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure. -
34
Oracle Stream Analytics
Oracle
Oracle Stream Analytics empowers users to handle and evaluate vast amounts of real-time data through advanced correlation techniques, enrichment capabilities, and machine learning integration. This platform delivers immediate, actionable insights for businesses dealing with streaming information, facilitating automated responses that support the needs of modern agile enterprises. It features Visual GEOProcessing with GEOFence relationship spatial analytics, enhancing location-based decision-making. Additionally, the introduction of a new Expressive Patterns Library encompasses various categories, such as Spatial, Statistical, General industry, and Anomaly detection, alongside streaming machine learning functionalities. With an intuitive visual interface, users can seamlessly explore live streaming data, enabling effective in-memory analytics that enhance real-time business strategies. Overall, this powerful tool significantly improves operational efficiency and decision-making processes in fast-paced environments. -
35
Azure Stream Analytics
Microsoft
Explore Azure Stream Analytics, a user-friendly real-time analytics solution tailored for essential workloads. Create a comprehensive serverless streaming pipeline effortlessly within a matter of clicks. Transition from initial setup to full production in mere minutes with SQL, which can be easily enhanced with custom code and integrated machine learning features for complex use cases. Rely on the assurance of a financially backed SLA as you handle your most challenging workloads, knowing that performance and reliability are prioritized. This service empowers organizations to harness real-time data effectively, ensuring timely insights and informed decision-making. -
36
Azure Event Hubs
Microsoft
$0.03 per hourEvent Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency. -
37
IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
-
38
Apache Doris
The Apache Software Foundation
FreeApache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management. -
39
Samza
Apache Software Foundation
Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs. -
40
KX Streaming Analytics offers a comprehensive solution for ingesting, storing, processing, and analyzing both historical and time series data, ensuring that analytics, insights, and visualizations are readily accessible. To facilitate rapid productivity for your applications and users, the platform encompasses the complete range of data services, which includes query processing, tiering, migration, archiving, data protection, and scalability. Our sophisticated analytics and visualization tools, which are extensively utilized in sectors such as finance and industry, empower you to define and execute queries, calculations, aggregations, as well as machine learning and artificial intelligence on any type of streaming and historical data. This platform can be deployed across various hardware environments, with the capability to source data from real-time business events and high-volume inputs such as sensors, clickstreams, radio-frequency identification, GPS systems, social media platforms, and mobile devices. Moreover, the versatility of KX Streaming Analytics ensures that organizations can adapt to evolving data needs and leverage real-time insights for informed decision-making.
-
41
Evam's Continuous Intelligence Platform integrates various products aimed at the processing and visualization of real-time data streams. It operates machine learning models in real time while enhancing the data with an advanced in-memory caching system. By doing so, EVAM allows companies in telecommunications, financial services, retail, transportation, and travel sectors to fully leverage their business potential. This platform's machine learning capabilities facilitate the processing of live data, enabling the visual design and orchestration of customer journeys through sophisticated analytical models and AI algorithms. Furthermore, EVAM helps businesses connect with their customers across various channels, including legacy systems, in real time. With the ability to collect and process billions of events instantaneously, companies can gain valuable insights into each customer’s preferences, allowing them to attract, engage, and retain clients more efficiently. The effectiveness of such a system not only enhances operational capabilities but also fosters deeper customer relationships.
-
42
Kapacitor
InfluxData
$0.002 per GB per hourKapacitor serves as a dedicated data processing engine for InfluxDB 1.x and is also a core component of the InfluxDB 2.0 ecosystem. This powerful tool is capable of handling both stream and batch data, enabling real-time responses through its unique programming language, TICKscript. In the context of contemporary applications, merely having dashboards and operator alerts is insufficient; there is a growing need for automation and action-triggering capabilities. Kapacitor employs a publish-subscribe architecture for its alerting system, where alerts are published to specific topics and handlers subscribe to these topics for updates. This flexible pub/sub framework, combined with the ability to execute User Defined Functions, empowers Kapacitor to function as a pivotal control plane within various environments, executing tasks such as auto-scaling, stock replenishment, and managing IoT devices. Additionally, Kapacitor's straightforward plugin architecture allows for seamless integration with various anomaly detection engines, further enhancing its versatility and effectiveness in data processing. -
43
Apache NiFi
Apache Software Foundation
A user-friendly, robust, and dependable system for data processing and distribution is offered by Apache NiFi, which facilitates the creation of efficient and scalable directed graphs for routing, transforming, and mediating data. Among its various high-level functions and goals, Apache NiFi provides a web-based user interface that ensures an uninterrupted experience for design, control, feedback, and monitoring. It is designed to be highly configurable, loss-tolerant, and capable of low latency and high throughput, while also allowing for dynamic prioritization of data flows. Additionally, users can alter the flow in real-time, manage back pressure, and trace data provenance from start to finish, as it is built with extensibility in mind. You can also develop custom processors and more, which fosters rapid development and thorough testing. Security features are robust, including SSL, SSH, HTTPS, and content encryption, among others. The system supports multi-tenant authorization along with internal policy and authorization management. Also, NiFi consists of various web applications, such as a web UI, web API, documentation, and custom user interfaces, necessitating the configuration of your mapping to the root path for optimal functionality. This flexibility and range of features make Apache NiFi an essential tool for modern data workflows. -
44
GigaSpaces
GigaSpaces
Smart DIH is a data management platform that quickly serves applications with accurate, fresh and complete data, delivering high performance, ultra-low latency, and an always-on digital experience. Smart DIH decouples APIs from SoRs, replicating critical data, and making it available using event-driven architecture. Smart DIH enables drastically shorter development cycles of new digital services, and rapidly scales to serve millions of concurrent users – no matter which IT infrastructure or cloud topologies it relies on. XAP Skyline is a distributed in-memory development platform that delivers transactional consistency, combined with extreme event-based processing and microsecond latency. The platform fuels core business solutions that rely on instantaneous data, including online trading, real-time risk management and data processing for AI and large language models. -
45
Astra Streaming
DataStax
Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments. -
46
Digital Twin Streaming Service
ScaleOut Software
ScaleOut Digital Twin Streaming Service™ allows for the seamless creation and deployment of real-time digital twins for advanced streaming analytics. With the ability to connect to numerous data sources such as Azure and AWS IoT hubs, Kafka, and others, it enhances situational awareness through live, aggregate analytics. This innovative cloud service is capable of tracking telemetry from millions of data sources simultaneously, offering immediate and in-depth insights with state-tracking and focused real-time feedback for a multitude of devices. The user-friendly interface streamlines deployment and showcases aggregate analytics in real time, which is essential for maximizing situational awareness. It is suitable for a diverse array of applications, including the Internet of Things (IoT), real-time monitoring, logistics, and financial services. The straightforward pricing structure facilitates a quick and easy start. When paired with the ScaleOut Digital Twin Builder software toolkit, the ScaleOut Digital Twin Streaming Service paves the way for the next generation of stream processing, empowering users to leverage data like never before. This combination not only enhances operational efficiency but also opens new avenues for innovation across various sectors. -
47
Apama
Apama
Apama Streaming Analytics empowers businesses to process and respond to IoT and rapidly changing data in real-time, enabling them to react intelligently as events unfold. The Apama Community Edition serves as a freemium option from Software AG, offering users the chance to explore, develop, and deploy streaming analytics applications in a practical setting. Meanwhile, the Software AG Data & Analytics Platform presents a comprehensive, modular, and cohesive suite of advanced capabilities tailored for managing high-velocity data and conducting analytics on real-time information, complete with seamless integration to essential enterprise data sources. Users can select the features they require, including streaming, predictive, and visual analytics, alongside messaging capabilities that facilitate straightforward integration with various enterprise applications and an in-memory data store that ensures rapid access. Additionally, by incorporating historical data for comparative analysis, organizations can enhance their models and enrich critical customer and operational data, ultimately leading to more informed decision-making. This level of flexibility and functionality makes Apama an invaluable asset for companies aiming to leverage their data effectively. -
48
Decodable
Decodable
$0.20 per task per hourSay goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis. -
49
Xeotek
Xeotek
Xeotek accelerates the development and exploration of data applications and streams for businesses through its robust desktop and web applications. The Xeotek KaDeck platform is crafted to cater to the needs of developers, operations teams, and business users equally. By providing a shared platform for business users, developers, and operations, KaDeck fosters a collaborative environment that minimizes misunderstandings, reduces the need for revisions, and enhances overall transparency for the entire team. With Xeotek KaDeck, you gain authoritative control over your data streams, allowing for significant time savings by obtaining insights at both the data and application levels during projects or routine tasks. Easily export, filter, transform, and manage your data streams in KaDeck, simplifying complex processes. The platform empowers users to execute JavaScript (NodeV4) code, create and modify test data, monitor and adjust consumer offsets, and oversee their streams or topics, along with Kafka Connect instances, schema registries, and access control lists, all from a single, user-friendly interface. This comprehensive approach not only streamlines workflow but also enhances productivity across various teams and projects. -
50
Kinetica
Kinetica
A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale.