Best Diabatix ColdStream Alternatives in 2025
Find the top alternatives to Diabatix ColdStream currently available. Compare ratings, reviews, pricing, and features of Diabatix ColdStream alternatives in 2025. Slashdot lists the best Diabatix ColdStream alternatives on the market that offer competing products that are similar to Diabatix ColdStream. Sort through Diabatix ColdStream alternatives below to make the best choice for your needs
-
1
Azore CFD
Azore CFD
14 RatingsAzore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows. -
2
TAITherm
ThermoAnalytics
Experience the full spectrum of heat transfer processes, encompassing convection, radiation, storage, and dissipation, while addressing both steady-state and transient environmental conditions. TAITherm thermal analysis software combines simplicity with robust capabilities, effectively handling solar and thermal radiation, convection, and conduction in various dynamic environments. By alleviating the complexities associated with thermal simulations, TAITherm guarantees that your designs will perform at their best in practical situations. Engineers and teams worldwide rely on TAITherm, utilizing it for diverse applications that span cutting-edge developments in fields such as automotive, electronics, wearables, military technology, architecture, and beyond. Our clients are at the forefront of innovation, leveraging thermal simulations and analysis to enhance usability, safety, and efficiency in their respective domains, ultimately pushing the limits of technological advancement. With TAITherm, the future of thermal analysis is not only accessible but also transformative for industries striving for excellence. -
3
6SigmaET
6SigmaET
6SigmaET is a sophisticated tool for thermal modeling in electronics that employs cutting-edge computational fluid dynamics (CFD) to produce precise simulations of electronic devices. Tailored for the electronics sector, our thermal simulation software brings unmatched intelligence, automation, and precision to assist you in fulfilling your requirements and addressing thermal design obstacles. Since its launch in 2009, 6SigmaET has rapidly emerged as the leading thermal simulation software within the electronics cooling industry. Its flexibility enables users to assess the thermal characteristics of a wide array of electronic components, from the tiniest integrated circuits to the largest, most robust servers. You can discover more about the benefits 6SigmaET offers your field by watching our informative videos or reviewing our comprehensive case studies. Additionally, 6SigmaET allows for the seamless import of complete CAD geometry and PCB designs, significantly cutting down the time needed for model creation and enhancing overall efficiency in thermal analysis. This capability streamlines the process, enabling engineers to focus more on optimization rather than on initial setup. -
4
SINDA/FLUINT
C&R Technologies
For many years, SINDA/FLUINT has been recognized for its effective and robust capabilities in heat transfer and fluid analysis, with enhancements introduced annually. This versatile tool serves as an all-encompassing platform for simulating intricate thermal and fluid systems, applicable across a variety of sectors including electronics, automotive, petrochemicals, power generation, healthcare, and aerospace. By streamlining the design process, SINDA/FLUINT enables users to save both time and financial resources, facilitating a deeper comprehension of their complex systems. You have the power to determine what aspects are crucial and how to approach your design performance inquiries in the most efficient manner. Additionally, the software's extensibility makes it potentially the most adaptable thermal and fluid analysis tool available today. Users can select the features they desire, establish the necessary levels of precision and approximation, and specify the required outputs, ensuring a tailored experience that meets their unique needs. This flexibility allows engineers to optimize their designs effectively in the challenging landscape of modern technology. -
5
Energy2D
The Concord Consortium
FreeEnergy2D is an interactive multiphysics simulation program grounded in computational physics, designed to model the three primary modes of heat transfer: conduction, convection, and radiation, while also integrating particle dynamics. This software operates efficiently on a wide range of computers, simplifying the process by removing the need for switches between preprocessors, solvers, and postprocessors that are usually necessary for computational fluid dynamics simulations. Users can create "computational experiments" to explore scientific hypotheses or address engineering challenges without the need for intricate mathematical formulations. Additionally, development is ongoing to introduce various energy transformation types and to enhance support for different fluid types. While Energy2D excels in accurately modeling conduction, its representations of convection and radiation are not entirely precise, which means results involving these elements should be regarded as qualitative. Over 40 scientific papers have utilized Energy2D as a valuable research instrument, showcasing its adoption in the academic community. As the program evolves, its capabilities are expected to expand further, potentially offering more comprehensive insights into complex physical interactions. -
6
CAPlite
EKK, INC.
Harness the advantages of natural solidification thermal analyses with a cost-effective and efficient software solution. CAPlite is equipped with a user-friendly graphical interface, making it accessible for users with limited experience in casting software. Beginning with a CAD design, CAPlite provides a thorough walkthrough for every phase, from meshing to post-processing. The method of natural solidifications offers rapid thermal simulations, delivering results in mere minutes. Whether for die casting or sand casting, CAPlite is capable of pinpointing issues across all casting types. The straightforward nature of natural solidifications enhances your entire casting workflow, enabling the design of risers, gating, and chill configurations to detect flaws, while also aiding in visualizing the intricate solidification process. In addition to the robust features of natural solidifications, CAPlite offers even more resources, equipping you with the necessary tools to optimize your castings—all at a remarkably low price point. This comprehensive software empowers you to elevate your casting practices, making it an invaluable tool for both novice and seasoned professionals alike. -
7
SimScale, a web-based cloud application, plays an important role in simulation software for many industries. The platform supports Computational Fluid Dynamics, Finite Element Analysis (FEA), as well as Thermal Simulation. It also provides 3D simulation, continuous modeling, motion & dynamic modelling.
-
8
FloCAD
C&R Technologies
FloCAD® serves as an add-on module for Thermal Desktop®, creating a comprehensive software solution for thermohydraulic analysis that encompasses fluid flow and heat transfer. The process of constructing fluid flow models in FloCAD closely resembles that of thermal models, allowing for the use of numerous shared commands across both model types. Users can create FloCAD models using a free-form approach, which allows for the simplification and abstraction of flow networks, or they can opt for geometry-based modeling that incorporates elements like pipe centerlines, cross-sections, and intricate vessels, as well as convection calculations linked to finite difference or finite element thermal structures. As an advanced tool for pipe flow analysis, FloCAD effectively accounts for pressure losses within piping networks arising from bends, valves, tees, and variations in flow area, among other factors. This versatility makes FloCAD a valuable asset for engineers looking to optimize system designs. -
9
Simcenter Flotherm
Siemens
After over 34 years of refinement and input from users, Simcenter Flotherm has established itself as the premier software for electronic cooling simulations, specifically tailored for thermal analysis of electronics. This powerful tool accelerates product development across various levels, from IC packaging and PCB design to expansive systems like data centers. By utilizing rapid and precise CFD simulations, it enhances thermal management in electronics, ensuring reliability from the initial pre-CAD exploration phase to the ultimate verification stage. Simcenter Flotherm seamlessly integrates into the electronics development process, enabling thermal engineers to conduct simulations that yield prompt and precise results, which are crucial for collaboration with other engineering teams. Furthermore, it facilitates informed decision-making regarding thermal management from the initial architectural stages to the final verification of thermal designs. This comprehensive approach not only shortens development timelines but also mitigates the risks associated with expensive reliability failures and late-stage redesigns. In essence, Simcenter Flotherm stands as a vital resource for any organization aiming to enhance its electronic product performance while maintaining efficiency and reliability. -
10
Ansys Sherlock
Ansys
Ansys Sherlock stands out as the sole reliability physics-based tool for electronics design that delivers quick and precise life expectancy assessments for electronic components, boards, and systems during the initial design phases. By automating the design analysis process, Ansys Sherlock enables the rapid generation of life predictions, thus eliminating the "test-fail-fix-repeat" cycle that often hampers development. Designers can effectively model the interactions between silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies, allowing for accurate predictions of potential failure risks stemming from thermal, mechanical, and manufacturing stresses, all prior to creating prototypes. Additionally, Sherlock's extensive libraries, which house over 500,000 components, facilitate the seamless transformation of electronic computer-aided design (ECAD) files into computational fluid dynamics (CFD) and finite element analysis (FEA) models. Each of these models is equipped with precise geometries and material properties, ensuring that stress information is accurately conveyed for reliable predictions. This capability not only enhances design efficiency but also significantly reduces the risk of costly errors in the later stages of product development. -
11
Ansys Fluent
Ansys
Ansys Fluent stands out as the premier fluid simulation software, distinguished by its cutting-edge physics modeling features and unmatched precision. By utilizing Ansys Fluent, you can dedicate more time to innovation and enhancing product efficiency. This software is backed by extensive validation across diverse applications, ensuring you can rely on its simulation outcomes. With Ansys Fluent, creating sophisticated physics models and evaluating various fluid dynamics phenomena is seamless within a user-friendly and customizable interface. This robust simulation tool significantly expedites your design process, allowing for quicker iterations and improvements. Boasting top-tier physics models, Ansys Fluent can effectively and accurately tackle intricate, large-scale simulations. The software unveils new possibilities for computational fluid dynamics (CFD) analysis. Additionally, its rapid pre-processing capabilities and swift solving times empower you to be the quickest in bringing your products to market. Fluent's unmatched features foster boundless innovation while maintaining a steadfast commitment to precision and reliability. Ultimately, Ansys Fluent not only enhances your design capabilities but also positions you ahead of the competition in a fast-paced industry. -
12
ENVI-met
ENVI-met
€290 one-time paymentENVI-met is a three-dimensional microclimate simulation tool designed for various purposes, including urban development, architectural design, and enhancing energy efficiency, by taking into account all relevant climate factors rather than focusing on just one. This software can model different climate scenarios, encompassing both daytime and nighttime temperatures, humidity levels, wind speeds, and solar radiation in urban areas. Additionally, it allows for the exploration of how various building materials, like glass and stone, impact the microclimate of their surroundings. By predicting how alterations in urban design influence both the microclimate and the thermal comfort of urban dwellers, ENVI-met serves as a vital resource for cities around the globe. Given the significant challenges posed by climate change, developing healthier and more resilient urban environments has become increasingly important. Therefore, ENVI-met is instrumental in evaluating the potential impacts of new constructions, green spaces, and urban planning initiatives, enabling stakeholders to make well-informed decisions that promote sustainability and improve community well-being. This capability underscores the software's relevance in fostering innovative solutions for contemporary urban challenges. -
13
Simcenter MAGNET
Siemens
Simcenter MAGNET serves as an advanced simulation tool for analyzing electromagnetic fields, enabling users to predict the performance of various components such as motors, generators, sensors, transformers, actuators, and solenoids that involve permanent magnets or coils. By facilitating low-frequency electromagnetic field simulations, Simcenter MAGNET offers comprehensive modeling capabilities that accurately represent the underlying physics of electromagnetic devices. Among its features are the modeling of manufacturing processes, temperature-sensitive material properties, and the intricate behavior of magnetization and de-magnetization, along with vector hysteresis models. The software’s built-in motion solver incorporates a six-degree-of-freedom functionality, which allows for the precise modeling and analysis of complex scenarios such as magnetic levitation and intricate motion dynamics. This advanced capability is bolstered by innovative smart re-meshing technology, ensuring that even the most challenging electromagnetic problems can be effectively addressed. Consequently, Simcenter MAGNET stands out as an essential tool for engineers and designers looking to optimize electromagnetic systems in a range of applications. -
14
CONSELF
CONSELF
By utilizing CONSELF, you can harness the power of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) to enhance your product designs: reduce drag and losses related to fluid dynamics, boost efficiency, optimize heat exchange capabilities, assess pressure loads, confirm material strength, analyze deformation in component shapes, compute natural frequencies and modes, among various other functions. The platform offers both static and dynamic simulations for Structural Mechanics, accommodating the behavior of materials under elastic and plastic conditions. Additionally, it enables modal and frequency analyses, starting from widely used CAD neutral file formats, ensuring a seamless integration into your design workflow. This comprehensive approach allows for innovative solutions to complex engineering challenges. -
15
Frost 3D Universal
Simmakers
Frost 3D software enables users to create scientific models that accurately represent the thermal behavior of permafrost influenced by various structures such as pipelines, production wells, and hydraulic facilities, while also considering the thermal stabilization of the soil. This software suite is built upon a decade of expertise in programming, computational geometry, numerical methods, 3D visualization, and the optimization of computational algorithms through parallel processing. It allows for the construction of a 3D computational domain that accurately reflects surface topography and soil composition; facilitates the 3D modeling of pipelines, boreholes, and the foundations of structures; and supports the importation of various 3D object formats like Wavefront (OBJ), StereoLitho (STL), 3D Studio Max (3DS), and Frost 3D Objects (F3O). Additionally, it includes a comprehensive library of thermophysical properties related to soil, building components, climatic influences, and cooling unit specifications, along with the capability to define the thermal and hydrological characteristics of 3D objects and the heat transfer properties on their surfaces. The software thus represents a sophisticated tool for engineers and scientists working in fields related to permafrost and thermal dynamics. -
16
Ansys Icepak
Ansys
Ansys Icepak serves as a computational fluid dynamics (CFD) solver specifically designed for managing thermal issues in electronic devices. It offers insights into airflow, temperature distributions, and heat transfer phenomena within integrated circuit packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the top-tier Ansys Fluent CFD solver, Ansys Icepak delivers robust cooling solutions tailored for electronic components, allowing for thorough thermal and fluid flow evaluations. The software operates through the Ansys Electronics Desktop (AEDT) graphical user interface (GUI), facilitating comprehensive analyses of heat transfer involving conduction, convection, and radiation. Moreover, it boasts sophisticated features for modeling both laminar and turbulent flow conditions, as well as conducting species analysis that incorporates radiation and convection effects. Ansys’ extensive PCB design platform empowers users to perform simulations on PCBs, ICs, and packages, enabling a precise assessment of complete electronic systems, thereby enhancing design efficiency and performance optimization. Thus, Ansys Icepak stands out as an essential tool for engineers aiming to improve thermal management in their electronic designs. -
17
Pyris
PerkinElmer
$1,720 one-time paymentThe Pyris™ software platform breathes life into your PerkinElmer thermal analysis instruments and data, establishing itself as the standard for high-sensitivity thermal analysis. Known for its intuitive and user-friendly interface, Pyris stands out in the field of thermal analysis, offering a comprehensive suite of features that provides unparalleled flexibility. Whether utilized in a fully automated research environment, a quality assurance laboratory, or as a standalone tool, Pyris software is designed to fulfill a variety of operational needs. We prioritize user satisfaction by continuously improving the software based on feedback from our customers. With a unified platform across all instruments, users benefit from an easy-to-navigate system that is quick to master. Pyris software maintains its ease of use while ensuring robust capabilities, allowing for seamless data acquisition and analysis within a single interface, all while enabling the operation of multiple analyzers concurrently. This platform also boasts a diverse range of analytical options and offers flexibility for data import and export, making it a versatile choice for any thermal analysis task. Thus, Pyris software not only streamlines processes but also enhances productivity for users across various applications. -
18
PowerFLOW
Dassault Systèmes
Utilizing the distinctive and inherently dynamic Lattice Boltzmann-based physics, the PowerFLOW CFD solution conducts simulations that effectively replicate real-world scenarios. With the PowerFLOW suite, engineers can assess product performance at the early stages of design, before any prototypes are constructed—this is when alterations can have the most substantial effects on both design and budget. The PowerFLOW system seamlessly imports intricate model geometries and conducts aerodynamic, aeroacoustic, and thermal management simulations with high accuracy and efficiency. By automating domain discretization and turbulence modeling along with wall treatment, it removes the need for manual volume meshing and boundary layer meshing. Users can confidently execute PowerFLOW simulations using a large number of compute cores on widely utilized High Performance Computing (HPC) platforms, enhancing productivity and reliability in the simulation process. This capability not only accelerates product development timelines but also ensures that potential issues are identified and addressed early in the design phase. -
19
CoTherm
Thermo Analytics
CoTherm is a sophisticated coupling and process automation tool that serves as a liaison between various CAE applications. It simplifies the task of process automation, making it invaluable for conducting sensitivity analyses, executing design of experiments, or managing multiple CAE models within a unified framework. This functionality enhances efficiency in pre-processing, transient thermal analysis, and post-processing tasks. With a licensed version of CoTherm, users receive ready-made templates for frequently encountered coupling and automation challenges. The software also features advanced optimization functions that identify the most suitable input parameters for your design. Any CAE analysis can benefit from its general optimization subprocesses, ensuring improved outcomes. CoTherm employs a mathematically robust approach, incorporating both global and local optimization methods, which alleviates uncertainty and simplifies the design process. It seamlessly integrates with a wide range of popular thermal and CFD codes, and its robust features allow for the coupling of any software that operates via command line or configuration files. This versatility makes CoTherm a vital asset for engineers seeking to enhance their design workflows and optimize their simulation processes. -
20
MSC Nastran
MSC Software
MSC Nastran is a versatile application for multidisciplinary structural analysis, allowing engineers to conduct various assessments, including static, dynamic, and thermal analyses, in both linear and nonlinear contexts. This software integrates automated structural optimization and award-winning fatigue analysis technologies, all powered by advanced computing capabilities. Engineers leverage MSC Nastran to guarantee that structural systems possess the required strength, stiffness, and longevity to prevent failures such as excessive stresses, resonance, buckling, or harmful deformations that could jeopardize structural integrity and safety. Additionally, MSC Nastran serves to enhance the cost-effectiveness and comfort of passenger experiences in structural designs. By optimizing performance in existing frameworks or creating distinctive product features, this tool provides a competitive edge within the industry. Furthermore, it assists in addressing potential structural problems that might arise during a product's operational life, thereby minimizing downtime and reducing associated costs. Ultimately, MSC Nastran empowers engineers to innovate and refine their designs effectively. -
21
SOLIDWORKS Simulation
SolidWorks
Subjecting your designs to real-world scenarios can significantly enhance product quality while simultaneously minimizing the costs associated with prototyping and physical testing. The SOLIDWORKS® Simulation suite offers a user-friendly collection of structural analysis tools that employ Finite Element Analysis (FEA) to forecast how a product will behave in actual physical conditions by virtually evaluating CAD models. This comprehensive portfolio is equipped with capabilities for both linear and non-linear static and dynamic analyses. With SOLIDWORKS Simulation Professional, you can refine your designs by assessing mechanical resistance, durability, topology, natural frequencies, as well as examining heat transfer and potential buckling issues. Additionally, it facilitates sequential multi-physics simulations to enhance design accuracy. On the other hand, SOLIDWORKS Simulation Premium allows for an in-depth assessment of designs concerning nonlinear and dynamic responses, dynamic loading conditions, and composite materials. This advanced tier also features three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, ensuring a thorough evaluation of your engineering projects. By leveraging these powerful tools, engineers can achieve greater design confidence and innovation. -
22
AnyCasting
AnyCasting
AnyCasting Software has established itself as a premier casting simulation tool for more than two decades. At present, we collaborate with manufacturers in sectors such as automotive, maritime, heavy materials, and electronics, having successfully sold over 600 licenses globally while providing expert consulting for more than 470 projects across various regions. The software offers advanced stress analysis capabilities, allowing users to effectively simulate deformation alongside heat and stress factors, while also facilitating automatic mold design to help in achieving the best mold configurations. Among our satisfied domestic clients are notable names like Hyundai Motors, Hyundai Heavy Industries, Samsung Electronics, and LG Electronics, among others. Furthermore, the software allows for precise identification of gas defects that may arise from air entrapment during the filling and flowing of molten material. By analyzing the pressure differentials between air and the melt, our technology successfully pinpoints these gas defects, enhancing the overall quality and efficiency of the casting process. This level of detail and precision showcases the software's commitment to improving manufacturing outcomes. -
23
Creo Simulation
PTC
Elevate your product design by incorporating simulation and analysis, which helps minimize expensive physical prototyping while enhancing the durability, reliability, and safety of your products. Employing digital prototypes to assess the performance of your designs in real-world scenarios is crucial for successful product development. Creo Simulation is specifically tailored for engineers, featuring a robust suite of structural, thermal, and vibration analysis tools along with an extensive range of finite element analysis (FEA) capabilities. With Creo Simulation, you can effectively evaluate and affirm the performance of your 3D virtual prototypes prior to producing the first physical component. We provide adaptable and innovative simulation solutions to meet the distinct needs of our customers. This section serves as a resource to explore our offerings tailored to your requirements, and should you have any inquiries about our toolset, please do not hesitate to reach out to a Creo representative for assistance. This proactive approach ensures that your products not only meet but exceed expectations in their respective markets. -
24
Autodesk CFD
Autodesk
Autodesk CFD is a sophisticated software for computational fluid dynamics that allows engineers and analysts to forecast the behavior of liquids and gases with high accuracy. This tool significantly reduces the reliance on physical prototypes while enhancing understanding of fluid flow performance in various designs. It equips engineers with an extensive suite of robust tools aimed at optimizing system designs, managing thermal issues particularly in electronics cooling, and integrating Building Information Modeling (BIM) to improve occupant comfort in HVAC systems within Architecture, Engineering, and Construction (AEC) and Mechanical, Electrical, and Plumbing (MEP) sectors. Furthermore, the Application Programming Interface (API) and scripting capabilities enhance Autodesk CFD's functionalities, enabling customization and automation of routine tasks through the Decision Center. Additionally, the Decision Center streamlines the process of comparing system designs, thereby accelerating decision-making in design processes. This comprehensive approach not only improves efficiency but also empowers engineers to make more informed decisions in their projects. -
25
MuSES
ThermoAnalytics
MuSES achieves unparalleled accuracy in electro-optic and infrared renderings through a systematic process that starts with the identification of heat sources like engines, exhaust systems, bearings, and electronic components, followed by a comprehensive in-band diffuse radiosity solution. After establishing your sensor at a specified range, you can render multi-bounce radiance values that have been spectrally summed, utilizing DeltaT-RSS contrast metrics for detailed analysis. If you have a sensor response curve available, simply import it to uncover insights you may have overlooked. With MuSES, you can explore reality in unprecedented detail. The software’s capability extends to comprehensively address physics from heat sources to environmental influences, enabling you to effectively manage thermal signature contrasts and assess control kits essential for low observable design in any geographical context. You can rigorously evaluate heat shields, cooling methods, and camouflage surface treatments for in-band radiance while accounting for atmospheric attenuation along the sensor’s line-of-sight. By prioritizing engineering tasks with MuSES early in your project development cycle, you empower your team to make informed decisions that enhance overall design effectiveness. This foresight can significantly streamline the development process and improve project outcomes. -
26
Thermal Desktop
C&R Technologies
1 RatingThermal Desktop encompasses every facet of creating models, integrating various built-in objects like finite difference, finite element, and lumped capacitance that can be arranged in numerous ways. Users can incorporate thermal-specific components such as contact conductance, insulation, heat loads, and heaters, enabling the modeling of a wide range of systems from automotive parts to crewed spacecraft. The software features comprehensive parameterization, allowing input through variables and complex expressions instead of fixed numerical values. These variables, known as symbols, facilitate swift adjustments to models with minimal effort, simplifying the process of updating or maintaining them, as well as conducting sensitivity analyses and exploring hypothetical scenarios. Furthermore, this capability enhances access to SINDA/FLUINT’s modules for optimization and reliability, along with automated model correlation, ultimately enriching the modeling experience. By streamlining these processes, Thermal Desktop not only improves efficiency but also fosters innovation in thermal analysis. -
27
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
28
RadCAD
C&R Technologies
RadCAD employs an advanced, oct-tree accelerated Monte-Carlo ray tracing algorithm to calculate radiation exchange factors and view factors with remarkable speed. The enhancements introduced by C&R Technologies in the ray tracing methodology have led to the development of a highly efficient thermal radiation analysis tool. By utilizing finite difference "conics" or curved finite elements from TD Direct®, RadCAD is capable of precisely simulating diffuse and specular reflections as well as transmissive surfaces, independent of node density. The thermal solution's requirements govern the node quantity, rather than the precision needed for radiation calculations. Furthermore, RadCAD allows users to create custom databases that specify optical properties, with each surface coating detailing its absorptivity, transmissivity, reflectivity, and specularity in both solar and infrared wavelengths. These optical characteristics can be tailored to account for variations in incident angles or wavelength dependencies, enhancing the accuracy and relevance of thermal modeling. Ultimately, this level of customization ensures that RadCAD meets diverse analytical needs across various applications. -
29
SIMHEAT
TRANSVALOR
Induction heat treatment simulation offers detailed insights into the temperature variations from the outer surface to the core and identifies specific regions where phase changes take place. With SIMHEAT®, users can assess how factors like current frequency, coil design, and the positioning of concentrators influence the heat-affected zone. The material modeling aspect accounts for the electrical and magnetic characteristics that vary with temperature. Moreover, SIMHEAT® can operate independently or work in conjunction with Transvalor software, ensuring a flawless transfer of results between the two platforms. This high level of interoperability guarantees that users can rely on consistent and accurate outcomes. Furthermore, all the features and functionalities available in SIMHEAT® are also incorporated into our FORGE® software, which is tailored for simulating hot, semi-hot, and cold forming processes, thereby expanding its utility in various manufacturing applications. -
30
Simcenter Nastran
Siemens
Simcenter Nastran stands out as a leading finite element method (FEM) solver known for its exceptional computational performance, precision, dependability, and scalability. This comprehensive tool provides robust solutions for various applications, including linear and nonlinear structural analysis, structural dynamics, acoustics, rotor dynamics, aeroelasticity, thermal analysis, and optimization. One of the key benefits of having such a diverse array of solutions within a single solver is that it standardizes input/output file formats across all types of analyses, significantly streamlining the modeling process. Whether utilized as an independent enterprise solver or integrated within Simcenter 3D, Simcenter Nastran is instrumental for manufacturers and engineering firms across several sectors, including aerospace, automotive, electronics, heavy machinery, and medical devices. By catering to their vital engineering computing requirements, it enables these industries to deliver safe, reliable, and optimized designs while adhering to increasingly tighter design timelines. This versatility and efficiency make Simcenter Nastran an invaluable asset in the modern engineering landscape. -
31
FORGE
Transvalor
FORGE® serves as a premier software solution for simulating both hot and cold forming processes, having established itself as the flagship product of Transvalor for nearly 35 years while gaining a global customer base. This software effectively addresses the requirements of companies that manufacture forged components across various industrial domains. Among its standout features is point tracking, which facilitates the identification of cold-shut regions within the component and predicts metal fibering, a critical aspect for ensuring that the forgings exhibit excellent mechanical characteristics. It also employs advanced marking techniques to visualize segregations found at the core of the billet and to pinpoint flow-through anomalies. Furthermore, FORGE® provides forecasts for forging loads, energy consumption, torques, and the power required during each deformation process, enabling users to assess whether the demands on their equipment are acceptable, optimize the distribution of forging loads across different phases, and identify potential issues related to die balancing and deflection. With its comprehensive capabilities, FORGE® empowers manufacturers to enhance their production efficiency and product quality significantly. -
32
TRANSWELD
TRANSVALOR
In industries where the integrity of welded structures is critical, TRANSWELD® provides a cutting-edge and comprehensive solution for predicting potential welding imperfections. This advanced simulation software employs multi-physical models to accurately reflect the actual behavior of metal in both liquid and mushy phases, enabling an in-depth analysis of material transformations. Furthermore, TRANSWELD® facilitates the examination of the microstructure in solid-state assemblies. With this tool, you can ensure that your welded components meet required standards without the need for physical prototypes. Our software is entirely predictive, allowing users to digitally observe welding processes under realistic conditions. For instance, it enables the visualization of the heat source movement during simulations of techniques such as laser welding or arc welding, enhancing understanding and efficiency in the welding process. Such capabilities not only streamline production but also significantly reduce the risk of defects in the final product. -
33
Simcenter STAR-CCM+
Siemens Digital Industries
Simcenter STAR-CCM+ is an advanced multiphysics computational fluid dynamics (CFD) software that enables the simulation of products in conditions that mimic real-life scenarios. This software stands out by incorporating automated design exploration and optimization into the CFD toolkit accessible to engineers. With a unified platform that encompasses CAD, automated meshing, multiphysics CFD capabilities, and advanced postprocessing, it empowers engineers to thoroughly investigate the entire design landscape, facilitating quicker and more informed design choices. By leveraging the insights offered by Simcenter STAR-CCM+, the design process becomes more strategic, ultimately resulting in innovative products that surpass customer expectations. Enhancing a battery's performance across its complete operating spectrum is a complex endeavor that necessitates the concurrent optimization of various parameters. In this context, Simcenter delivers a comprehensive simulation environment tailored for the analysis and design of electrochemical systems, fostering a deeper understanding of their behavior. This holistic approach allows engineers to tackle intricate challenges with confidence and precision. -
34
Abaqus
Dassault Systèmes
Currently, engineering teams frequently rely on specialized simulation tools from various vendors to assess different design characteristics, which can lead to inefficiencies and higher costs due to the use of multiple software solutions. To address these challenges, SIMULIA offers a comprehensive suite of cohesive analysis products that enable users with varying levels of simulation knowledge and expertise to collaborate effectively while sharing simulation data and approved methodologies without compromising information integrity. The Abaqus Unified FEA product suite provides robust and comprehensive solutions for both standard and advanced engineering challenges, catering to a wide range of industrial applications. In the automotive sector, engineering teams can analyze complete vehicle loads, dynamic vibrations, multibody systems, impact and crash scenarios, nonlinear static situations, thermal interactions, and acoustic-structural relationships, all while utilizing a unified model data structure and integrated solver technology. This seamless integration enhances collaboration and improves the overall efficiency of the engineering process, allowing teams to innovate more rapidly. -
35
Inventor Nastran
Autodesk
Inventor® Nastran® is a finite element analysis (FEA) tool integrated within CAD software, enabling engineers and analysts to perform a diverse range of studies using various materials. This software provides comprehensive simulation capabilities that encompass both linear and nonlinear stress analysis, dynamic simulations, and heat transfer assessments. It is exclusively accessible through the Product Design & Manufacturing Collection, which includes a suite of powerful tools designed to enhance workflows within Inventor. In addition to advanced simulation features, this collection also offers 5-axis CAM, nesting tools, and access to software like AutoCAD and Fusion 360, ensuring a holistic approach to product design and manufacturing processes. By utilizing Inventor Nastran, professionals can streamline their analysis and improve their design outcomes significantly. -
36
OPTIMICA Compiler Toolkit
MODELON
Modelon’s OPTIMICA Compiler Toolkit stands out as the market's leading Modelica-based mathematical engine, providing users with a robust solution for automating, simulating, and optimizing system behaviors across the model-based design cycle. As the trusted compiler for Modelon Impact, OPTIMICA allows users to construct multi-domain physical systems by selecting from a vast library of model components. The toolkit’s cutting-edge solvers facilitate the evaluation of intricate physical systems, accommodating both transient simulations and steady-state calculations, as well as dynamic optimization. With its advanced mathematical capabilities, OPTIMICA can effectively manipulate and streamline models to enhance performance and reliability, catering to diverse industries and applications that range from automotive and active safety to energy and power generation optimization. Given the growing demand for effective power regulation in the contemporary energy landscape, optimizing the startup processes of thermal power plants has become a critical industrial requirement. Furthermore, the flexibility and efficiency of OPTIMICA make it an invaluable asset for engineers tackling complex system challenges. -
37
REM3D
TRANSVALOR
Utilizing a local density map, REM3D® delivers dependable predictions regarding the resistance of components along with their insulating, noise, and comfort characteristics. By simulating a ‘dual foam’ pouring process, one can observe the transitional areas between foams with varying rigidities. Incorporating "mold tilting" into the simulation replicates realistic process conditions, ensuring they are as accurate as possible. The inclusion of features like automatic mold tilting and the influence of gravity on melt flow enables an analysis of genuine process conditions, thereby ensuring uniformity in your components. Additionally, investigating the placement of injectors minimizes the occurrence of defects. Consequently, you gain trustworthy forecasts related to not only the durability of your components but also their insulating and comfort attributes. For fiber-reinforced plastics, REM3D® also assesses the orientation of the fibers throughout the filling phase and after the cooling process has completed. This comprehensive analysis enhances the overall quality of the final products. -
38
Simcenter 3D
Siemens
Tackle intricate engineering problems by improving the efficiency of simulations. Simcenter 3D stands out as one of the most thorough and seamlessly integrated CAE solutions available. It allows you to create and assess the performance of complex products through groundbreaking advancements in simulation efficiency. By bringing together various physics domains within a single modeling environment, you can quickly gain deeper insights into how your product performs. This integrated platform facilitates all aspects of CAE pre- and post-processing, allowing for a streamlined workflow. With unmatched tools for geometry manipulation, you can easily defeature and simplify CAD geometry from any origin. Additionally, its extensive meshing and modeling capabilities cater to diverse simulation needs, granting you the exceptional ability to connect your analysis model with design data seamlessly. This connection not only accelerates the often tedious modeling process but also ensures that your analysis models remain aligned with the most current design iterations, ultimately enhancing productivity and accuracy in your engineering projects. By adopting Simcenter 3D, you can significantly reduce development time while improving the quality of your simulations. -
39
Powersim Studio
Powersim Solutions
Powersim Solutions offers the premier system dynamics simulation software known as Powersim Studio™, available through a partnership with Powersim Software AS. This company provides a comprehensive range of simulation tools designed to meet diverse requirements for constructing simulations, conducting thorough analyses, and sharing solutions. The product lineup from Powersim is divided into four distinct categories, ensuring that there is something for everyone. Their tools are tailored to support various tasks, including simulation creation, detailed analysis, risk assessment, and optimization. Among the offerings, the Studio Developer Tools empower developers to integrate simulations into bespoke software applications, allowing for the distribution of personalized simulations or applications. Additionally, Powersim Software provides user-friendly tools that enable users to perform detailed analyses using simulations developed in their advanced modeling tool, Powersim Studio Premium, enhancing the overall analytical capabilities available to users. -
40
ProModel
BigBear.ai
ProModel serves as a sophisticated tool for discrete event simulation and predictive analytics, offering valuable insights for navigating intricate decision-making processes. By utilizing ProModel AI simulation software, you can enhance your system's efficiency while simultaneously mitigating risks. Our solutions, driven by data, cater to industries that demand meticulous planning and forecasting to maintain seamless, effective, and optimal operations. Understanding the implications of operational changes on production and scheduling is critical for both current and future scenarios. Our AI simulation software empowers organizations to create, simulate, and refine factory layouts using a digital twin, quickly project patient counts and bed availability, identify and avert operational bottlenecks, and improve capacity planning and scheduling to facilitate smoother production workflows. With dynamic simulation models, you can achieve superior process management and utilize visual insights to pinpoint the origins and reasons behind bottlenecks, ultimately leading to more informed decision-making and enhanced operational efficiency. -
41
T*SOL
Valentin Software
T*SOL is a simulation tool designed to assess the performance of thermal solar systems. It caters to various applications including domestic water heating, heating augmentation, swimming pool heating, and process heating. With T*SOL, you can effectively plan and size your solar thermal installations, including storage solutions and collector configurations, even for east-west roof orientations, while analyzing their economic viability. At the outset of your design journey, you have access to a wide array of relevant systems tailored for heating water, supporting heating needs, managing swimming pools, and addressing process heat demands. The software offers dimensioning recommendations throughout the design phase and allows for parameter adjustments, enabling you to discover the most effective combinations of storage capacity and collector area. Furthermore, the simulation outputs, including energy values, temperatures, and volumes, can be visualized in various graphical formats. Users can select from options like bar charts and line graphs, with the flexibility to adjust the time frame from a single day to an entire year, facilitating a comprehensive analysis of the system's performance over different periods. This versatility makes T*SOL an invaluable resource for optimizing solar thermal system designs. -
42
Availability Workbench
Isograph
Robust simulation software designed to enhance asset performance is available, offering features such as maintenance and spare parts optimization, availability assessments, reliability-centered maintenance strategies, life cycle cost analyses, and accelerated life testing, all within a single cohesive platform. This software seamlessly integrates with your SAP or MAXIMO systems for comprehensive data analysis. It allows for the identification of critical machinery and the automatic generation of failure models through Weibull analysis. By leveraging simulation, you can refine your maintenance strategies and cut expenses. Additionally, the tool predicts system availability while optimizing design processes. It also facilitates the simulation of capacity for multiple products, incorporating target cost penalties. You can model interdependencies within systems using reliability block diagrams (RBDs) or fault trees. Operational rules can be embedded to ensure accurate performance simulations. Furthermore, it helps in determining the optimal spare parts inventory strategy. Life cycle costs can be predicted, and the ALT module allows for the analysis of test data related to stressed failures. Lastly, the software enables the identification of performance trends within the process reliability module, providing valuable insights for continuous improvement. -
43
Autodesk Fusion 360
Autodesk
$495 per yearFusion 360 seamlessly integrates design, engineering, electronics, and manufacturing into one cohesive software environment. It offers a comprehensive suite that combines CAD, CAM, CAE, and PCB capabilities within a single development platform. Additionally, users benefit from features like EAGLE Premium, HSMWorks, Team Participant, and various cloud-based services, including generative design and cloud simulation. With an extensive range of modeling tools, engineers can effectively design products while ensuring their form, fit, and function through multiple analysis techniques. Users can create and modify sketches using constraints, dimensions, and advanced sketching tools. It also allows for editing or fixing imported geometry from other file formats with ease. Design modifications can be made without concern for time-dependent features, enabling flexibility in the workflow. Furthermore, the software supports the creation of intricate parametric surfaces for tasks such as repairing or designing geometry, while history-based features like extrude, revolve, loft, and sweep dynamically adapt to any design alterations made. This versatility makes Fusion 360 an essential tool for modern engineering practices. -
44
Ansys optiSLang
Ansys
Streamline your simulation toolchain and link it to advanced algorithms for robust design optimization. Prepare for your future requirements in parametric and simulation-driven virtual product development by utilizing Ansys optiSLang. This innovative platform continuously evolves to meet the demands of CAE-based Robust Design Optimization (RDO). Its cutting-edge algorithms are designed to efficiently and automatically identify the most robust design configurations, thus replacing the tedious, manual methods previously employed in RDO. By incorporating optiSLang as your solution for process integration and design optimization, you will be empowered to make informed decisions more quickly. Enhance the search for optimal and robust design configurations by leveraging the automation of the search process, complemented by interactive visualization and AI technologies. With its advanced algorithms for design exploration, optimization, robustness, and reliability analysis, you can achieve superior decision-making with reduced effort, ultimately leading to a more efficient design optimization process. Embrace this transformative approach to elevate your product development and stay ahead in a competitive landscape. -
45
Simulink
MathWorks
$860 per yearDevelop and test your system using Simulink prior to implementing it on actual hardware. This allows you to explore and apply innovative designs that might typically be overlooked, all without the need to engage in C, C++, or HDL programming. By modeling both the system you are testing and the physical plant, you can investigate a broader design landscape. Your entire team can benefit from a unified multi-domain platform that simulates the interactions of all system components. You can also package and share your simulation results with team members, suppliers, and clients for collaborative feedback. This approach helps minimize costly prototypes by allowing you to experiment with scenarios that might otherwise be deemed too risky or impractical. Use hardware-in-the-loop testing and rapid prototyping to confirm your design's effectiveness. With this method, you can ensure traceability throughout the process, from requirements gathering to design and code development. Rather than manually crafting thousands of lines of code, you can automatically generate high-quality C and HDL code that mirrors your original Simulink model. Finally, deploy this code directly onto your embedded processor or FPGA/ASIC for seamless integration and operation. This comprehensive approach not only streamlines development but also enhances overall project efficiency.