Best DeepSeek-V2 Alternatives in 2025

Find the top alternatives to DeepSeek-V2 currently available. Compare ratings, reviews, pricing, and features of DeepSeek-V2 alternatives in 2025. Slashdot lists the best DeepSeek-V2 alternatives on the market that offer competing products that are similar to DeepSeek-V2. Sort through DeepSeek-V2 alternatives below to make the best choice for your needs

  • 1
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 2
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.
  • 3
    DeepSeek Reviews
    DeepSeek stands out as a state-of-the-art AI assistant, leveraging the sophisticated DeepSeek-V3 model that boasts an impressive 600 billion parameters for superior performance. Created to rival leading AI systems globally, it delivers rapid responses alongside an extensive array of features aimed at enhancing daily tasks' efficiency and simplicity. Accessible on various platforms, including iOS, Android, and web, DeepSeek guarantees that users can connect from virtually anywhere. The application offers support for numerous languages and is consistently updated to enhance its capabilities, introduce new language options, and fix any issues. Praised for its smooth functionality and adaptability, DeepSeek has received enthusiastic reviews from a diverse user base around the globe. Furthermore, its commitment to user satisfaction and continuous improvement ensures that it remains at the forefront of AI technology.
  • 4
    DeepSeek-V3.1-Terminus Reviews
    DeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints.
  • 5
    Command A Reviews

    Command A

    Cohere AI

    $2.50 / 1M tokens
    Cohere has launched Command A, an advanced AI model engineered to enhance efficiency while using minimal computational resources. This model not only competes with but also surpasses other leading models such as GPT-4 and DeepSeek-V3 in various enterprise tasks that require agentic capabilities, all while dramatically lowering computing expenses. Command A is specifically designed for applications that demand rapid and efficient AI solutions, enabling organizations to carry out complex tasks across multiple fields without compromising on performance or computational efficiency. Its innovative architecture allows businesses to harness the power of AI effectively, streamlining operations and driving productivity.
  • 6
    DeepSeek-V3 Reviews
    DeepSeek-V3 represents a groundbreaking advancement in artificial intelligence, specifically engineered to excel in natural language comprehension, sophisticated reasoning, and decision-making processes. By utilizing highly advanced neural network designs, this model incorporates vast amounts of data alongside refined algorithms to address intricate problems across a wide array of fields, including research, development, business analytics, and automation. Prioritizing both scalability and operational efficiency, DeepSeek-V3 equips developers and organizations with innovative resources that can significantly expedite progress and lead to transformative results. Furthermore, its versatility makes it suitable for various applications, enhancing its value across industries.
  • 7
    DeepSeek-Coder-V2 Reviews
    DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape.
  • 8
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 9
    GLM-4.6 Reviews
    GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
  • 10
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 11
    ModelArk Reviews
    ModelArk is the central hub for ByteDance’s frontier AI models, offering a comprehensive suite that spans video generation, image editing, multimodal reasoning, and large language models. Users can explore high-performance tools like Seedance 1.0 for cinematic video creation, Seedream 3.0 for 2K image generation, and DeepSeek-V3.1 for deep reasoning with hybrid thinking modes. With 500,000 free inference tokens per LLM and 2 million free tokens for vision models, ModelArk lowers the barrier for innovation while ensuring flexible scalability. Pricing is straightforward and cost-effective, with transparent per-token billing that allows businesses to experiment and scale without financial surprises. The platform emphasizes security-first AI, featuring full-link encryption, sandbox isolation, and controlled, auditable access to safeguard sensitive enterprise data. Beyond raw model access, ModelArk includes PromptPilot for optimization, plug-in integration, knowledge bases, and agent tools to accelerate enterprise AI development. Its cloud GPU resource pools allow organizations to scale from a single endpoint to thousands of GPUs within minutes. Designed to empower growth, ModelArk combines technical innovation, operational trust, and enterprise scalability in one seamless ecosystem.
  • 12
    Chat Stream Reviews
    Chat Stream offers users the opportunity to tap into two robust language models developed by DeepSeek, showcasing their impressive capabilities. The models, DeepSeek V3 and R1, contain a staggering 671 billion parameters, with 37 billion activated per token, and consistently achieve remarkable benchmark performances, such as MMLU at 87.1% and BBH at 87.5%. With an extensive context window length of 128K, these models excel in tasks like code generation, complex mathematical computations, and processing multiple languages. Technically, they leverage an advanced Mixture-of-Experts (MoE) architecture, utilize Multi-head Latent Attention (MLA), feature auxiliary-loss-free load balancing, and implement a multi-token prediction objective to enhance performance. Deployment is versatile, providing a web-based chat interface for immediate access, easy integration into websites through iframes, and dedicated mobile applications for both iOS and Android devices. Furthermore, the models are compatible with various hardware, including NVIDIA, AMD GPUs, and Huawei Ascend NPUs, allowing for both local inference and cloud-based deployment. Users can benefit from different access methods, including free chat without the need for registration, website embedding options, mobile app usage, and a premium subscription that offers an ad-free experience, ensuring flexibility and accessibility for all.
  • 13
    Command A Translate Reviews
    Cohere's Command A Translate is a robust machine translation solution designed for enterprises, offering secure and top-notch translation capabilities in 23 languages pertinent to business. It operates on an advanced 111-billion-parameter framework with an 8K-input / 8K-output context window, providing superior performance that outshines competitors such as GPT-5, DeepSeek-V3, DeepL Pro, and Google Translate across various benchmarks. The model facilitates private deployment options for organizations handling sensitive information, ensuring they maintain total control of their data, while also featuring a pioneering “Deep Translation” workflow that employs an iterative, multi-step refinement process to significantly improve translation accuracy for intricate scenarios. RWS Group’s external validation underscores its effectiveness in managing demanding translation challenges. Furthermore, the model's parameters are accessible for research through Hugging Face under a CC-BY-NC license, allowing for extensive customization, fine-tuning, and adaptability for private implementations, making it an attractive option for organizations seeking tailored language solutions. This versatility positions Command A Translate as an essential tool for enterprises aiming to enhance their communication across global markets.
  • 14
    DeepSeek V3.1 Reviews
    DeepSeek V3.1 stands as a revolutionary open-weight large language model, boasting an impressive 685-billion parameters and an expansive 128,000-token context window, which allows it to analyze extensive documents akin to 400-page books in a single invocation. This model offers integrated functionalities for chatting, reasoning, and code creation, all within a cohesive hybrid architecture that harmonizes these diverse capabilities. Furthermore, V3.1 accommodates multiple tensor formats, granting developers the versatility to enhance performance across various hardware setups. Preliminary benchmark evaluations reveal strong results, including a remarkable 71.6% on the Aider coding benchmark, positioning it competitively with or even superior to systems such as Claude Opus 4, while achieving this at a significantly reduced cost. Released under an open-source license on Hugging Face with little publicity, DeepSeek V3.1 is set to revolutionize access to advanced AI technologies, potentially disrupting the landscape dominated by conventional proprietary models. Its innovative features and cost-effectiveness may attract a wide range of developers eager to leverage cutting-edge AI in their projects.
  • 15
    DeepSeek Coder Reviews
    DeepSeek Coder is an innovative software solution poised to transform the realm of data analysis and programming. By harnessing state-of-the-art machine learning techniques and natural language processing, it allows users to effortlessly incorporate data querying, analysis, and visualization into their daily tasks. The user-friendly interface caters to both beginners and seasoned developers, making the writing, testing, and optimization of code a straightforward process. Among its impressive features are real-time syntax validation, smart code suggestions, and thorough debugging capabilities, all aimed at enhancing productivity in coding. Furthermore, DeepSeek Coder’s proficiency in deciphering intricate data sets enables users to extract valuable insights and develop advanced data-centric applications with confidence. Ultimately, its combination of powerful tools and ease of use positions DeepSeek Coder as an essential asset for anyone engaged in data-driven projects.
  • 16
    Open R1 Reviews
    Open R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence.
  • 17
    QwQ-32B Reviews
    The QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence.
  • 18
    DeepSeekMath Reviews
    DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
  • 19
    ERNIE X1 Turbo Reviews
    Baidu’s ERNIE X1 Turbo is designed for industries that require advanced cognitive and creative AI abilities. Its multimodal processing capabilities allow it to understand and generate responses based on a range of data inputs, including text, images, and potentially audio. This AI model’s advanced reasoning mechanisms and competitive performance make it a strong alternative to high-cost models like DeepSeek R1. Additionally, ERNIE X1 Turbo integrates seamlessly into various applications, empowering developers and businesses to use AI more effectively while lowering the costs typically associated with these technologies.
  • 20
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 21
    Yi-Lightning Reviews
    Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field.
  • 22
    Phi-4-reasoning-plus Reviews
    Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models.
  • 23
    ERNIE X1.1 Reviews
    ERNIE X1.1 is Baidu’s latest reasoning AI model, designed to raise the bar for accuracy, reliability, and action-oriented intelligence. Compared to ERNIE X1, it delivers a 34.8% boost in factual accuracy, a 12.5% improvement in instruction compliance, and a 9.6% gain in agentic behavior. Benchmarks show that it outperforms DeepSeek R1-0528 and matches the capabilities of advanced models such as GPT-5 and Gemini 2.5 Pro. The model builds upon ERNIE 4.5 with additional mid-training and post-training phases, reinforced by end-to-end reinforcement learning. This approach helps minimize hallucinations while ensuring closer alignment to user intent. The agentic upgrades allow it to plan, make decisions, and execute tasks more effectively than before. Users can access ERNIE X1.1 through ERNIE Bot, Wenxiaoyan, or via API on Baidu’s Qianfan platform. Altogether, the model delivers stronger reasoning capabilities for developers and enterprises that demand high-performance AI.
  • 24
    Kimi K2 Reviews
    Kimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing.
  • 25
    Phi-4-mini-reasoning Reviews
    Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
  • 26
    Janus-Pro-7B Reviews
    Janus-Pro-7B is a groundbreaking open-source multimodal AI model developed by DeepSeek, expertly crafted to both comprehend and create content involving text, images, and videos. Its distinctive autoregressive architecture incorporates dedicated pathways for visual encoding, which enhances its ability to tackle a wide array of tasks, including text-to-image generation and intricate visual analysis. Demonstrating superior performance against rivals such as DALL-E 3 and Stable Diffusion across multiple benchmarks, it boasts scalability with variants ranging from 1 billion to 7 billion parameters. Released under the MIT License, Janus-Pro-7B is readily accessible for use in both academic and commercial contexts, marking a substantial advancement in AI technology. Furthermore, this model can be utilized seamlessly on popular operating systems such as Linux, MacOS, and Windows via Docker, broadening its reach and usability in various applications.
  • 27
    Tencent Yuanbao Reviews
    Tencent Yuanbao is an AI-driven assistant that has swiftly gained traction in China, utilizing sophisticated large language models, including its own Hunyuan model, while also integrating with DeepSeek. This application stands out in various domains, such as processing the Chinese language, logical reasoning, and executing tasks efficiently. In recent months, Yuanbao's user base has expanded dramatically, allowing it to outpace rivals like DeepSeek and achieve the top position on the Apple App Store download charts in China. A significant factor fueling its ascent is its seamless integration within the Tencent ecosystem, especially through WeChat, which boosts its accessibility and enhances its array of features. This impressive growth underscores Tencent's increasing ambition to carve out a significant presence in the competitive landscape of AI assistants, as it continues to innovate and expand its offerings. As Yuanbao evolves, it is likely to further challenge existing players in the market.
  • 28
    R1 1776 Reviews
    Perplexity AI has released R1 1776 as an open-source large language model (LLM), built on the DeepSeek R1 framework, with the goal of improving transparency and encouraging collaborative efforts in the field of AI development. With this release, researchers and developers can explore the model's architecture and underlying code, providing them the opportunity to enhance and tailor it for diverse use cases. By making R1 1776 available to the public, Perplexity AI seeks to drive innovation while upholding ethical standards in the AI sector. This initiative not only empowers the community but also fosters a culture of shared knowledge and responsibility among AI practitioners.
  • 29
    Oumi Reviews
    Oumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases.
  • 30
    Baichuan-13B Reviews

    Baichuan-13B

    Baichuan Intelligent Technology

    Free
    Baichuan-13B is an advanced large-scale language model developed by Baichuan Intelligent, featuring 13 billion parameters and available for open-source and commercial use, building upon its predecessor Baichuan-7B. This model has set new records for performance among similarly sized models on esteemed Chinese and English evaluation metrics. The release includes two distinct pre-training variations: Baichuan-13B-Base and Baichuan-13B-Chat. By significantly increasing the parameter count to 13 billion, Baichuan-13B enhances its capabilities, training on 1.4 trillion tokens from a high-quality dataset, which surpasses LLaMA-13B's training data by 40%. It currently holds the distinction of being the model with the most extensive training data in the 13B category, providing robust support for both Chinese and English languages, utilizing ALiBi positional encoding, and accommodating a context window of 4096 tokens for improved comprehension and generation. This makes it a powerful tool for a variety of applications in natural language processing.
  • 31
    Qwen3 Reviews
    Qwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications.
  • 32
    Gemini 2.0 Flash-Lite Reviews
    Gemini 2.0 Flash-Lite represents the newest AI model from Google DeepMind, engineered to deliver an affordable alternative while maintaining high performance standards. As the most budget-friendly option within the Gemini 2.0 range, Flash-Lite is specifically designed for developers and enterprises in search of efficient AI functions without breaking the bank. This model accommodates multimodal inputs and boasts an impressive context window of one million tokens, which enhances its versatility for numerous applications. Currently, Flash-Lite is accessible in public preview, inviting users to investigate its capabilities for elevating their AI-focused initiatives. This initiative not only showcases innovative technology but also encourages feedback to refine its features further.
  • 33
    Hunyuan T1 Reviews
    Tencent has unveiled the Hunyuan T1, its advanced AI model, which is now accessible to all users via the Tencent Yuanbao platform. This model is particularly adept at grasping various dimensions and potential logical connections, making it ideal for tackling intricate challenges. Users have the opportunity to explore a range of AI models available on the platform, including DeepSeek-R1 and Tencent Hunyuan Turbo. Anticipation is building for the forthcoming official version of the Tencent Hunyuan T1 model, which will introduce external API access and additional services. Designed on the foundation of Tencent's Hunyuan large language model, Yuanbao stands out for its proficiency in Chinese language comprehension, logical reasoning, and effective task performance. It enhances user experience by providing AI-driven search, summaries, and writing tools, allowing for in-depth document analysis as well as engaging prompt-based dialogues. The platform's versatility is expected to attract a wide array of users seeking innovative solutions.
  • 34
    Marco-o1 Reviews
    Marco-o1 represents a state-of-the-art AI framework specifically designed for superior natural language understanding and immediate problem resolution. It is meticulously crafted to provide accurate and contextually appropriate replies, merging profound language insight with an optimized framework for enhanced speed and effectiveness. This model thrives in numerous settings, such as interactive dialogue systems, content generation, technical assistance, and complex decision-making processes, effortlessly adjusting to various user requirements. Prioritizing seamless, user-friendly experiences, dependability, and adherence to ethical AI standards, Marco-o1 emerges as a leading-edge resource for both individuals and enterprises in pursuit of intelligent, flexible, and scalable AI solutions. Additionally, the MCTS technique facilitates the investigation of numerous reasoning pathways by utilizing confidence scores based on the softmax-adjusted log probabilities of the top-k alternative tokens, steering the model towards the most effective resolutions while maintaining a high level of precision. Such capabilities not only enhance the overall performance of the model but also significantly improve user satisfaction and engagement.
  • 35
    Qwen2 Reviews
    Qwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications.
  • 36
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 37
    T3 Chat Reviews
    T3 Chat stands out as the quickest AI chat application available, offering responses that are twice as fast as those from ChatGPT and ten times quicker than DeepSeek. It provides users with access to an extensive array of leading AI models, such as Claude 3.5 Sonnet, GPT-4o, and DeepSeek V3, enabling seamless switching between them in real-time. The application boasts a sleek and user-friendly chat interface optimized for smooth conversations. With a focus on speed and user satisfaction, T3 Chat employs a local-first strategy, ensuring that data is stored directly on the user's device for quicker retrieval. Recently, T3 Chat has been completely redesigned to enhance its aesthetic and functional aspects, incorporating features like light mode and enhanced syntax highlighting. This innovative chat application is perfect for those who prioritize a fast, efficient, and visually engaging AI interaction, making it a top choice in the market. Additionally, T3 Chat continues to evolve, reflecting user feedback and technological advancements to maintain its position at the forefront of AI chat solutions.
  • 38
    Hunyuan-TurboS Reviews
    Tencent's Hunyuan-TurboS represents a cutting-edge AI model crafted to deliver swift answers and exceptional capabilities across multiple fields, including knowledge acquisition, mathematical reasoning, and creative endeavors. Departing from earlier models that relied on "slow thinking," this innovative system significantly boosts response rates, achieving a twofold increase in word output speed and cutting down first-word latency by 44%. With its state-of-the-art architecture, Hunyuan-TurboS not only enhances performance but also reduces deployment expenses. The model skillfully integrates fast thinking—prompt, intuition-driven responses—with slow thinking—methodical logical analysis—ensuring timely and precise solutions in a wide array of situations. Its remarkable abilities are showcased in various benchmarks, positioning it competitively alongside other top AI models such as GPT-4 and DeepSeek V3, thus marking a significant advancement in AI performance. As a result, Hunyuan-TurboS is poised to redefine expectations in the realm of artificial intelligence applications.
  • 39
    Mixtral 8x7B Reviews
    The Mixtral 8x7B model is an advanced sparse mixture of experts (SMoE) system that boasts open weights and is released under the Apache 2.0 license. This model demonstrates superior performance compared to Llama 2 70B across various benchmarks while achieving inference speeds that are six times faster. Recognized as the leading open-weight model with a flexible licensing framework, Mixtral also excels in terms of cost-efficiency and performance. Notably, it competes with and often surpasses GPT-3.5 in numerous established benchmarks, highlighting its significance in the field. Its combination of accessibility, speed, and effectiveness makes it a compelling choice for developers seeking high-performing AI solutions.
  • 40
    Qwen2.5-1M Reviews
    Qwen2.5-1M, an open-source language model from the Qwen team, has been meticulously crafted to manage context lengths reaching as high as one million tokens. This version introduces two distinct model variants, namely Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, representing a significant advancement as it is the first instance of Qwen models being enhanced to accommodate such large context lengths. In addition to this, the team has released an inference framework that is based on vLLM and incorporates sparse attention mechanisms, which greatly enhance the processing speed for 1M-token inputs, achieving improvements between three to seven times. A detailed technical report accompanies this release, providing in-depth insights into the design choices and the results from various ablation studies. This transparency allows users to fully understand the capabilities and underlying technology of the models.
  • 41
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    Together AI offers a cloud platform purpose-built for developers creating AI-native applications, providing optimized GPU infrastructure for training, fine-tuning, and inference at unprecedented scale. Its environment is engineered to remain stable even as customers push workloads to trillions of tokens, ensuring seamless reliability in production. By continuously improving inference runtime performance and GPU utilization, Together AI delivers a cost-effective foundation for companies building frontier-level AI systems. The platform features a rich model library including open-source, specialized, and multimodal models for chat, image generation, video creation, and coding tasks. Developers can replace closed APIs effortlessly through OpenAI-compatible endpoints. Innovations such as ATLAS, FlashAttention, Flash Decoding, and Mixture of Agents highlight Together AI’s strong research contributions. Instant GPU clusters allow teams to scale from prototypes to distributed workloads in minutes. AI-native companies rely on Together AI to break performance barriers and accelerate time to market.
  • 42
    PanGu-Σ Reviews
    Recent breakthroughs in natural language processing, comprehension, and generation have been greatly influenced by the development of large language models. This research presents a system that employs Ascend 910 AI processors and the MindSpore framework to train a language model exceeding one trillion parameters, specifically 1.085 trillion, referred to as PanGu-{\Sigma}. This model enhances the groundwork established by PanGu-{\alpha} by converting the conventional dense Transformer model into a sparse format through a method known as Random Routed Experts (RRE). Utilizing a substantial dataset of 329 billion tokens, the model was effectively trained using a strategy called Expert Computation and Storage Separation (ECSS), which resulted in a remarkable 6.3-fold improvement in training throughput through the use of heterogeneous computing. Through various experiments, it was found that PanGu-{\Sigma} achieves a new benchmark in zero-shot learning across multiple downstream tasks in Chinese NLP, showcasing its potential in advancing the field. This advancement signifies a major leap forward in the capabilities of language models, illustrating the impact of innovative training techniques and architectural modifications.
  • 43
    Olmo 3 Reviews
    Olmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications.
  • 44
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 45
    Qwen-7B Reviews
    Qwen-7B is the 7-billion parameter iteration of Alibaba Cloud's Qwen language model series, also known as Tongyi Qianwen. This large language model utilizes a Transformer architecture and has been pretrained on an extensive dataset comprising web texts, books, code, and more. Furthermore, we introduced Qwen-7B-Chat, an AI assistant that builds upon the pretrained Qwen-7B model and incorporates advanced alignment techniques. The Qwen-7B series boasts several notable features: It has been trained on a premium dataset, with over 2.2 trillion tokens sourced from a self-assembled collection of high-quality texts and codes across various domains, encompassing both general and specialized knowledge. Additionally, our model demonstrates exceptional performance, surpassing competitors of similar size on numerous benchmark datasets that assess capabilities in natural language understanding, mathematics, and coding tasks. This positions Qwen-7B as a leading choice in the realm of AI language models. Overall, its sophisticated training and robust design contribute to its impressive versatility and effectiveness.