ZeroPath
ZeroPath (YC S24) is an AI-native application security platform that delivers comprehensive code protection beyond traditional SAST. Founded by security engineers from Tesla and Google, ZeroPath combines large language models with deep program analysis to deliver intelligent security testing that finds real vulnerabilities while dramatically reducing false positives.
Unlike traditional SAST tools that rely on pattern matching, ZeroPath understands code context, business logic, and developer intent. This enables identification of sophisticated security issues including business logic flaws, broken authentication, authorization bypasses, and complex dependency vulnerabilities.
Our comprehensive security suite covers the application security lifecycle:
1. AI-powered SAST
2. Software Composition Analysis with reachability analysis
3. Secrets detection and validation
4. Infrastructure as Code scanning
5. Automated PR reviews
6. Automated patch generation
and more...
ZeroPath integrates seamlessly with GitHub, GitLab, Bitbucket, Azure DevOps and many more. The platform handles codebases with millions of lines across Python, JavaScript, TypeScript, Java, Go, Ruby, Rust, PHP, Kotlin and more.
Our research team has been successful in finding vulnerabilities like critical account takeover in better-auth (CVE-2025-61928, 300k+ weekly downloads), identifying 170+ verified bugs in curl, and discovering 0-days in production systems at Netflix, Hulu, and Salesforce.
Trusted by 750+ companies and performing 200k+ code scans monthly.
Learn more
PackageX OCR Scanning
PackageX OCR API turns any smartphone into an incredibly powerful universal label scanner. It can read every bit of text, including barcodes, QR codes and other information on the label.
Our OCR technology is the best in the industry. It uses proprietary algorithms and deep learning models to extract information from labels.
Our OCR API has been trained using information from more than 10 million labels. This allows for the highest scanning accuracy in the market, at over 95%.
Our technology can scan in low-light conditions and read labels from any angle.
Create your own OCR scanner app to eliminate pen-and-paper inefficiencies.
Our OCR scanner allows you to extract information from printed text or handwritten labels.
Our OCR software is trained using multilingual label data extracted in over 40 countries.
Detect and extract information from barcodes or QR codes.
Learn more
Qwen Code
Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
Learn more
Devstral Small 2
Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
Learn more