Best DeepCoder Alternatives in 2026

Find the top alternatives to DeepCoder currently available. Compare ratings, reviews, pricing, and features of DeepCoder alternatives in 2026. Slashdot lists the best DeepCoder alternatives on the market that offer competing products that are similar to DeepCoder. Sort through DeepCoder alternatives below to make the best choice for your needs

  • 1
    Devstral 2 Reviews
    Devstral 2 represents a cutting-edge, open-source AI model designed specifically for software engineering, going beyond mere code suggestion to comprehend and manipulate entire codebases, which allows it to perform tasks such as multi-file modifications, bug corrections, refactoring, dependency management, and generating context-aware code. The Devstral 2 suite comprises a robust 123-billion-parameter model and a more compact 24-billion-parameter version, known as “Devstral Small 2,” providing teams with the adaptability they need; the larger variant is optimized for complex coding challenges that require a thorough understanding of context, while the smaller version is suitable for operation on less powerful hardware. With an impressive context window of up to 256 K tokens, Devstral 2 can analyze large repositories, monitor project histories, and ensure a coherent grasp of extensive files, which is particularly beneficial for tackling the complexities of real-world projects. The command-line interface (CLI) enhances the model's capabilities by keeping track of project metadata, Git statuses, and the directory structure, thereby enriching the context for the AI and rendering “vibe-coding” even more effective. This combination of advanced features positions Devstral 2 as a transformative tool in the software development landscape.
  • 2
    DeepSWE Reviews

    DeepSWE

    Agentica Project

    Free
    DeepSWE is an innovative and fully open-source coding agent that utilizes the Qwen3-32B foundation model, trained solely through reinforcement learning (RL) without any supervised fine-tuning or reliance on proprietary model distillation. Created with rLLM, which is Agentica’s open-source RL framework for language-based agents, DeepSWE operates as a functional agent within a simulated development environment facilitated by the R2E-Gym framework. This allows it to leverage a variety of tools, including a file editor, search capabilities, shell execution, and submission features, enabling the agent to efficiently navigate codebases, modify multiple files, compile code, run tests, and iteratively create patches or complete complex engineering tasks. Beyond simple code generation, DeepSWE showcases advanced emergent behaviors; when faced with bugs or new feature requests, it thoughtfully reasons through edge cases, searches for existing tests within the codebase, suggests patches, develops additional tests to prevent regressions, and adapts its cognitive approach based on the task at hand. This flexibility and capability make DeepSWE a powerful tool in the realm of software development.
  • 3
    DeepScaleR Reviews
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 4
    Devstral Small 2 Reviews
    Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
  • 5
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 6
    Qwen Code Reviews
    Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
  • 7
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 8
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 9
    DeepSeek-Coder-V2 Reviews
    DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape.
  • 10
    Qwen2.5-Coder Reviews
    Qwen2.5-Coder-32B-Instruct has emerged as the leading open-source code model, effectively rivaling the coding prowess of GPT-4o. It not only exhibits robust and comprehensive programming skills but also demonstrates solid general and mathematical abilities. Currently, Qwen2.5-Coder encompasses six widely used model sizes tailored to the various needs of developers. We investigate the practicality of Qwen2.5-Coder across two different scenarios, such as code assistance and artifact generation, presenting examples that illustrate its potential use cases in practical applications. As the premier model in this open-source initiative, Qwen2.5-Coder-32B-Instruct has outperformed many other open-source models on several prominent code generation benchmarks, showcasing competitive capabilities alongside GPT-4o. Additionally, the skill of code repair is crucial for programmers, and Qwen2.5-Coder-32B-Instruct proves to be an invaluable tool for users aiming to troubleshoot and rectify coding errors, thereby streamlining the programming process and enhancing efficiency. This combination of functionalities positions Qwen2.5-Coder as an indispensable resource in the software development landscape.
  • 11
    SuperAGI SuperCoder Reviews
    SuperAGI SuperCoder is an innovative open-source autonomous platform that merges an AI-driven development environment with AI agents, facilitating fully autonomous software creation, beginning with the Python language and its frameworks. The latest iteration, SuperCoder 2.0, utilizes large language models and a Large Action Model (LAM) that has been specially fine-tuned for Python code generation, achieving remarkable accuracy in one-shot or few-shot coding scenarios, surpassing benchmarks like SWE-bench and Codebench. As a self-sufficient system, SuperCoder 2.0 incorporates tailored software guardrails specific to development frameworks, initially focusing on Flask and Django, while also utilizing SuperAGI’s Generally Intelligent Developer Agents to construct intricate real-world software solutions. Moreover, SuperCoder 2.0 offers deep integration with popular tools in the developer ecosystem, including Jira, GitHub or GitLab, Jenkins, and cloud-based QA solutions like BrowserStack and Selenium, ensuring a streamlined and efficient software development process. By combining cutting-edge technology with practical software engineering needs, SuperCoder 2.0 aims to redefine the landscape of automated software development.
  • 12
    Phi-4-mini-reasoning Reviews
    Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
  • 13
    Phi-4-reasoning-plus Reviews
    Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models.
  • 14
    Qwen3-Coder-Next Reviews
    Qwen3-Coder-Next is a language model with open weights, crafted for coding agents and local development, which excels in advanced coding reasoning, adept tool usage, and effective handling of long-term programming challenges with remarkable efficiency, utilizing a mixture-of-experts framework that harmonizes robust capabilities with a resource-efficient approach. This model enhances the coding prowess of software developers, AI system architects, and automated coding processes, allowing them to generate, debug, and comprehend code with a profound contextual grasp while adeptly recovering from execution errors, rendering it ideal for autonomous coding agents and applications focused on development. Furthermore, Qwen3-Coder-Next achieves impressive performance on par with larger parameter models, but does so while consuming fewer active parameters, thus facilitating economical deployment for intricate and evolving programming tasks in both research and production settings, ultimately contributing to a more streamlined development process.
  • 15
    Open R1 Reviews
    Open R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence.
  • 16
    DeepSeekMath Reviews
    DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
  • 17
    MiniMax M2.5 Reviews
    MiniMax M2.5 is a next-generation foundation model built to power complex, economically valuable tasks with speed and cost efficiency. Trained using large-scale reinforcement learning across hundreds of thousands of real-world task environments, it excels in coding, tool use, search, and professional office workflows. In programming benchmarks such as SWE-Bench Verified and Multi-SWE-Bench, M2.5 reaches state-of-the-art levels while demonstrating improved multilingual coding performance. The model exhibits architect-level reasoning, planning system structure and feature decomposition before writing code. With throughput speeds of up to 100 tokens per second, it completes complex evaluations significantly faster than earlier versions. Reinforcement learning optimizations enable more precise search rounds and fewer reasoning steps, improving overall efficiency. M2.5 is available in two variants—standard and Lightning—offering identical capabilities with different speed configurations. Pricing is designed to be dramatically lower than competing frontier models, reducing cost barriers for large-scale agent deployment. Integrated into MiniMax Agent, the model supports advanced office skills including Word formatting, Excel financial modeling, and PowerPoint editing. By combining high performance, efficiency, and affordability, MiniMax M2.5 aims to make agent-powered productivity accessible at scale.
  • 18
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 19
    GLM-5 Reviews
    GLM-5 is a next-generation open-source foundation model from Z.ai designed to push the boundaries of agentic engineering and complex task execution. Compared to earlier versions, it significantly expands parameter count and training data, while introducing DeepSeek Sparse Attention to optimize inference efficiency. The model leverages a novel asynchronous reinforcement learning framework called slime, which enhances training throughput and enables more effective post-training alignment. GLM-5 delivers leading performance among open-source models in reasoning, coding, and general agent benchmarks, with strong results on SWE-bench, BrowseComp, and Vending Bench 2. Its ability to manage long-horizon simulations highlights advanced planning, resource allocation, and operational decision-making skills. Beyond benchmark performance, GLM-5 supports real-world productivity by generating fully formatted documents such as .docx, .pdf, and .xlsx files. It integrates with coding agents like Claude Code and OpenClaw, enabling cross-application automation and collaborative agent workflows. Developers can access GLM-5 via Z.ai’s API, deploy it locally with frameworks like vLLM or SGLang, or use it through an interactive GUI environment. The model is released under the MIT License, encouraging broad experimentation and adoption. Overall, GLM-5 represents a major step toward practical, work-oriented AI systems that move beyond chat into full task execution.
  • 20
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 21
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 22
    DeepSeek Coder Reviews
    DeepSeek Coder is an innovative software solution poised to transform the realm of data analysis and programming. By harnessing state-of-the-art machine learning techniques and natural language processing, it allows users to effortlessly incorporate data querying, analysis, and visualization into their daily tasks. The user-friendly interface caters to both beginners and seasoned developers, making the writing, testing, and optimization of code a straightforward process. Among its impressive features are real-time syntax validation, smart code suggestions, and thorough debugging capabilities, all aimed at enhancing productivity in coding. Furthermore, DeepSeek Coder’s proficiency in deciphering intricate data sets enables users to extract valuable insights and develop advanced data-centric applications with confidence. Ultimately, its combination of powerful tools and ease of use positions DeepSeek Coder as an essential asset for anyone engaged in data-driven projects.
  • 23
    QwQ-32B Reviews
    The QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence.
  • 24
    Claude Sonnet 5 Reviews
    Claude Sonnet 5 is a next-generation AI model from Anthropic designed to perform exceptionally well in long-running and complex tasks. It specializes in software engineering, agent-based workflows, and advanced computer interaction. The model sets new benchmarks by achieving top-tier results on SWE-bench Verified for coding performance. It also ranks first on OSWorld, highlighting its ability to operate effectively in computer-driven environments. Sonnet 5 is built to maintain attention and coherence across tasks that span dozens of hours. Enhanced memory systems and context management allow it to reason deeply over extended conversations. The model supports sophisticated tool handling, enabling smoother automation and execution of workflows. It also offers strong domain understanding across areas such as finance, law, and STEM fields. Safety is reinforced through deployment at AI Safety Level 3. Additional protections help prevent prompt injection and misuse in sensitive domains.
  • 25
    GPT-5.2-Codex Reviews
    GPT-5.2-Codex is a next-generation coding model created to support advanced, agent-driven software development. Built on the GPT-5.2 architecture, it is fine-tuned specifically for real-world engineering tasks. The model excels at working across large codebases while preserving context over long sessions. It handles complex refactors, migrations, and multi-step implementations more reliably than previous Codex models. GPT-5.2-Codex demonstrates top-tier performance in realistic terminal environments. Enhanced tool-calling and improved factual accuracy make it suitable for production workflows. The model is also significantly stronger in cybersecurity-related tasks. It can assist with vulnerability research and defensive security analysis. GPT-5.2-Codex includes safeguards designed to support responsible deployment. It represents a major advancement in professional-grade coding AI.
  • 26
    Amazon Nova 2 Pro Reviews
    Nova 2 Pro represents the pinnacle of Amazon’s Nova family, offering unmatched reasoning depth for enterprises that depend on advanced AI to solve demanding operational challenges. It supports multimodal inputs including video, audio, and long-form text, allowing it to synthesize diverse information sources and deliver expert-grade insights. Its performance leadership spans complex instruction following, high-stakes decision tasks, agentic workflows, and software engineering use cases. Benchmark testing shows Nova 2 Pro outperforms or matches the latest Claude, GPT, and Gemini models across numerous intelligence and reasoning categories. Equipped with built-in web search and executable code capability, it produces grounded, verifiable responses ideal for enterprise reliability. Organizations also use Nova 2 Pro as a foundation for training smaller, faster models through distillation, making it adaptable for custom deployments. Its multimodal strengths support use cases like video comprehension, multi-document Q&A, and sophisticated data interpretation. Nova 2 Pro ultimately empowers teams to operate with higher accuracy, faster iteration cycles, and safer automation across critical workflows.
  • 27
    CodeQwen Reviews
    CodeQwen serves as the coding counterpart to Qwen, which is a series of large language models created by the Qwen team at Alibaba Cloud. Built on a transformer architecture that functions solely as a decoder, this model has undergone extensive pre-training using a vast dataset of code. It showcases robust code generation abilities and demonstrates impressive results across various benchmarking tests. With the capacity to comprehend and generate long contexts of up to 64,000 tokens, CodeQwen accommodates 92 programming languages and excels in tasks such as text-to-SQL queries and debugging. Engaging with CodeQwen is straightforward—you can initiate a conversation with just a few lines of code utilizing transformers. The foundation of this interaction relies on constructing the tokenizer and model using pre-existing methods, employing the generate function to facilitate dialogue guided by the chat template provided by the tokenizer. In alignment with our established practices, we implement the ChatML template tailored for chat models. This model adeptly completes code snippets based on the prompts it receives, delivering responses without the need for any further formatting adjustments, thereby enhancing the user experience. The seamless integration of these elements underscores the efficiency and versatility of CodeQwen in handling diverse coding tasks.
  • 28
    Claude Sonnet 4.5 Reviews
    Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies.
  • 29
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 30
    Gemini 2.5 Deep Think Reviews
    Gemini 2.5 Deep Think represents an advanced reasoning capability within the Gemini 2.5 suite, employing innovative reinforcement learning strategies and extended, parallel reasoning to address intricate, multi-faceted challenges in disciplines such as mathematics, programming, scientific inquiry, and strategic decision-making. By generating and assessing various lines of reasoning prior to delivering a response, it yields responses that are not only more detailed and creative but also more accurate, while accommodating longer interactions and integrating tools like code execution and web searches. Its performance has achieved top-tier results on challenging benchmarks, including LiveCodeBench V6 and Humanity’s Last Exam, showcasing significant improvements over earlier iterations in demanding areas. Furthermore, internal assessments reveal enhancements in content safety and tone-objectivity, although there is a noted increase in the model's propensity to reject harmless requests; in light of this, Google is actively conducting frontier safety evaluations and implementing measures to mitigate risks as the model continues to evolve. This ongoing commitment to safety underscores the importance of responsible AI development.
  • 31
    kluster.ai Reviews

    kluster.ai

    kluster.ai

    $0.15per input
    Kluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects.
  • 32
    Interview Coder Reviews

    Interview Coder

    Interview Coder

    $60 per month
    Interview Coder is a desktop application tailored to support job applicants in excelling at technical interviews by offering immediate help with coding challenges. Utilizing advanced AI, it formulates solutions based on images of the interview questions and coding tasks that the user submits. One standout feature is its ability to remain undetected during screen-sharing sessions, allowing candidates to use it without the interviewer being aware. The app encompasses a variety of functionalities, including automatic solution creation, debugging assistance, and optimization techniques with thorough explanations and analysis of complexity. Additionally, Interview Coder is versatile, supporting multiple programming languages and aiding users in efficiently crafting and enhancing their coding answers. The application also features intuitive keyboard shortcuts for streamlined navigation, including the capability to relocate the window discreetly and options to quickly reset or exit the program if needed. With its comprehensive tools, Interview Coder equips candidates with the confidence to tackle technical interviews head-on.
  • 33
    Claude Opus 4.6 Reviews
    Claude Opus 4.6 is Anthropic’s most advanced AI model, optimized for high-level reasoning and software engineering tasks. It outperforms earlier models and industry peers on benchmarks including SWE-bench and multilingual coding tests. The model is especially strong in agentic workflows that require sustained reasoning and decision-making. Opus 4.6 introduces improved safety and alignment mechanisms for handling sensitive or high-risk scenarios. Stronger defenses against prompt injection help ensure more reliable outputs. Developers gain enhanced control through the Claude API with new efficiency-focused parameters. Context compaction enables longer conversations without sacrificing performance. Advanced tool usage allows smoother automation and execution of complex workflows. Product updates extend Opus 4.6 across Claude apps, Claude Code, browser extensions, and Excel integrations. Together, these enhancements expand how users apply AI to engineering, research, and productivity.
  • 34
    Qwen Reviews
    Qwen is a next-generation AI system that brings advanced intelligence to users and developers alike, offering free access to a versatile suite of tools. Its capabilities include Qwen VLo for image generation, Deep Research for multi-step online investigation, and Web Dev for generating full websites from natural language prompts. The “Thinking” engine enhances Qwen’s reasoning and logical clarity, helping it tackle complex technical, analytical, and academic challenges. Qwen’s intelligent Search mode retrieves web information with precision, using contextual understanding and smart filtering. Its multimodal processing allows it to interpret content across text, images, audio, and video, enabling more accurate and comprehensive responses. Qwen Chat makes these features accessible to everyone, while developers can tap into the Qwen API to build apps, integrate Qwen into workflows, or create entirely new AI-driven experiences. The API follows an OpenAI-compatible format, making migration and adoption seamless. With broad platform support—web, Windows, macOS, iOS, and Android—Qwen delivers a unified, powerful AI ecosystem for all kinds of users.
  • 35
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 36
    LTM-2-mini Reviews
    LTM-2-mini operates with a context of 100 million tokens, which is comparable to around 10 million lines of code or roughly 750 novels. This model employs a sequence-dimension algorithm that is approximately 1000 times more cost-effective per decoded token than the attention mechanism used in Llama 3.1 405B when handling a 100 million token context window. Furthermore, the disparity in memory usage is significantly greater; utilizing Llama 3.1 405B with a 100 million token context necessitates 638 H100 GPUs per user solely for maintaining a single 100 million token key-value cache. Conversely, LTM-2-mini requires only a minuscule portion of a single H100's high-bandwidth memory for the same context, demonstrating its efficiency. This substantial difference makes LTM-2-mini an appealing option for applications needing extensive context processing without the hefty resource demands.
  • 37
    Devstral Reviews

    Devstral

    Mistral AI

    $0.1 per million input tokens
    Devstral is a collaborative effort between Mistral AI and All Hands AI, resulting in an open-source large language model specifically tailored for software engineering. This model demonstrates remarkable proficiency in navigating intricate codebases, managing edits across numerous files, and addressing practical problems, achieving a notable score of 46.8% on the SWE-Bench Verified benchmark, which is superior to all other open-source models. Based on Mistral-Small-3.1, Devstral boasts an extensive context window supporting up to 128,000 tokens. It is designed for optimal performance on high-performance hardware setups, such as Macs equipped with 32GB of RAM or Nvidia RTX 4090 GPUs, and supports various inference frameworks including vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is freely accessible on platforms like Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio, allowing developers to integrate its capabilities into their projects seamlessly. This model not only enhances productivity for software engineers but also serves as a valuable resource for anyone working with code.
  • 38
    Easy Coder Reviews

    Easy Coder

    Alpha II

    $84 one-time payment
    Easy Coder offers a comprehensive solution that integrates efficient searching for procedure and diagnosis codes, encounter editing, and compliance tools within a single user-friendly platform. By utilizing a web-based interface, the program ensures that users receive real-time updates on content, regulatory changes, and policies without the hassle of software installation. It confirms medical necessity, enhances coding efficiency, and consolidates various coding elements, enabling early corrections in the revenue cycle workflow. For nearly 15 years, our medical billing service has relied on Alpha II’s EasyCoder daily, and it has become an indispensable asset, granting my team quick access to up-to-date, thorough, and trustworthy coding information. Features like the E&M Generator, policy reviewer, lists of supporting diagnoses, and localized Medicare fee schedules have significantly boosted our team's expertise and confidence, allowing us to better assist our clients as a dependable resource. This powerful tool not only streamlines our processes but also fosters a culture of continuous learning and improvement within our organization.
  • 39
    Tabby Reviews
    Tabby is a self-hosted, open-source AI coding assistant that aims to improve your development workflow by offering intelligent code completion, real-time suggestions, and smooth integration with your preferred integrated development environment (IDE). You can deploy Tabby on your own servers, which gives you the advantage of security and control over your codebase. It is compatible with major coding large language models (LLMs) such as CodeLlama, StarCoder, and CodeGen, allowing it to adapt to your unique coding style while delivering precise and context-sensitive support. Whether you are coding solo or collaborating in a team setting, Tabby not only streamlines your coding tasks but also minimizes errors and speeds up project timelines. With its user-friendly features and customizable options, Tabby stands out as an essential tool for developers looking to optimize their coding experience.
  • 40
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 41
    DevKit Reviews
    The Ultimate AI Companion for Developers. DevGPT merges the capabilities of ChatGPT with over 30 specialized mini-devtools, enabling you to effortlessly test public APIs, access databases, generate code, and create interactive art—all in mere seconds, ultimately saving you countless hours each week! Rapidly develop features and test them independently before integrating them into your codebase with assurance. Unleash your inner creative coder by utilizing our code generation and p5.js tools to craft eye-catching art and engaging mini-games. Our vibrant community of over 250 developers on Discord is just the beginning; Pro users can take advantage of an even more exclusive sub-community. Enjoy the convenience of having all your preferred tools consolidated in one platform, eliminating the hassle of juggling multiple apps, websites, and command-line tools. This streamlined approach significantly minimizes context-switching, allowing you to enhance your overall productivity and focus on what truly matters. Embrace the future of development with DevGPT and transform your coding experience!
  • 42
    Sky-T1 Reviews
    Sky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development.
  • 43
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 44
    Claude Opus 4.5 Reviews
    Anthropic’s release of Claude Opus 4.5 introduces a frontier AI model that excels at coding, complex reasoning, deep research, and long-context tasks. It sets new performance records on real-world engineering benchmarks, handling multi-system debugging, ambiguous instructions, and cross-domain problem solving with greater precision than earlier versions. Testers and early customers reported that Opus 4.5 “just gets it,” offering creative reasoning strategies that even benchmarks fail to anticipate. Beyond raw capability, the model brings stronger alignment and safety, with notable advances in prompt-injection resistance and behavior consistency in high-stakes scenarios. The Claude Developer Platform also gains richer controls including effort tuning, multi-agent orchestration, and context management improvements that significantly boost efficiency. Claude Code becomes more powerful with enhanced planning abilities, multi-session desktop support, and better execution of complex development workflows. In the Claude apps, extended memory and automatic context summarization enable longer, uninterrupted conversations. Together, these upgrades showcase Opus 4.5 as a highly capable, secure, and versatile model designed for both professional workloads and everyday use.
  • 45
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.