Best Code Intelligence Alternatives in 2025

Find the top alternatives to Code Intelligence currently available. Compare ratings, reviews, pricing, and features of Code Intelligence alternatives in 2025. Slashdot lists the best Code Intelligence alternatives on the market that offer competing products that are similar to Code Intelligence. Sort through Code Intelligence alternatives below to make the best choice for your needs

  • 1
    Mayhem Reviews
    Mayhem is an innovative fuzz testing platform that integrates guided fuzzing with symbolic execution, leveraging a patented technology developed at CMU. This sophisticated solution significantly minimizes the need for manual testing by autonomously detecting and validating defects in software. By facilitating the delivery of safe, secure, and reliable software, it reduces the time, cost, and effort typically required. One of Mayhem's standout features is its capability to gather intelligence about its targets over time; as its understanding evolves, it enhances its analysis and maximizes overall code coverage. Every vulnerability identified is an exploitable and confirmed risk, enabling teams to prioritize their efforts effectively. Furthermore, Mayhem aids in remediation by providing comprehensive system-level insights, including backtraces, memory logs, and register states, which expedite the diagnosis and resolution of issues. Its ability to generate custom test cases in real-time, based on target feedback, eliminates the need for any manual test case creation. Additionally, Mayhem ensures that all generated test cases are readily accessible, making regression testing not only effortless but also a continuous and integral part of the development process. This seamless integration of automated testing and intelligent feedback sets Mayhem apart in the realm of software quality assurance.
  • 2
    go-fuzz Reviews
    Go-fuzz serves as a coverage-guided fuzzing tool designed specifically for testing Go packages, making it particularly effective for those that handle intricate inputs, whether they are textual or binary in nature. This method of testing is crucial for strengthening systems that need to process data from potentially harmful sources, such as network interactions. Recently, go-fuzz has introduced initial support for fuzzing Go Modules, inviting users to report any issues they encounter with detailed descriptions. It generates random input data, which is often invalid, and the function must return a value of 1 to indicate that the fuzzer should elevate the priority of that input in future fuzzing attempts, provided that it should not be stored in the corpus, even if it uncovers new coverage; a return value of 0 signifies the opposite, while other values are reserved for future enhancements. The fuzz function is required to reside in a package that go-fuzz can recognize, meaning the code under test cannot be located within the main package, although fuzzing of internal packages is permitted. This structured approach ensures that the testing process remains efficient and focused on identifying vulnerabilities in the code.
  • 3
    CI Fuzz Reviews

    CI Fuzz

    Code Intelligence

    €30 per month
    CI Fuzz guarantees that your code is both robust and secure, achieving test coverage levels as high as 100%. You can utilize CI Fuzz through the command line or within your preferred integrated development environment (IDE) to automatically generate a vast number of test cases. Similar to a unit test, CI Fuzz analyzes code during execution, leveraging AI to ensure every code path is effectively covered. This tool helps you identify genuine bugs in real-time, eliminating the need to deal with hypothetical problems and erroneous positives. It provides all the necessary details to help you swiftly reproduce and resolve actual issues. By maximizing your code coverage, CI Fuzz also automatically identifies common security vulnerabilities, such as injection flaws and remote code execution risks, all in a single process. Ensure your software is of the highest quality by achieving comprehensive test coverage. With CI Fuzz, you can elevate your unit testing practices, as it harnesses AI for thorough code path analysis and the seamless creation of numerous test cases. Ultimately, it enhances your pipeline's efficiency without sacrificing the integrity of the software being produced. This makes CI Fuzz an essential tool for any developer aiming to improve code quality and security.
  • 4
    LibFuzzer Reviews
    LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.
  • 5
    Echidna Reviews
    Echidna is a Haskell-based tool created for fuzzing and property-based testing of Ethereum smart contracts. It employs advanced grammar-driven fuzzing strategies that leverage a contract's ABI to challenge user-defined predicates or Solidity assertions. Designed with a focus on modularity, Echidna allows for easy extensions to incorporate new mutations or to target specific contracts under particular conditions. The tool generates inputs that are specifically adapted to your existing codebase, and it offers optional features for corpus collection, mutation, and coverage guidance to uncover more elusive bugs. It utilizes Slither to extract critical information prior to launching the fuzzing process, ensuring a more effective campaign. With source code integration, Echidna can pinpoint which lines of code are exercised during testing, and it provides an interactive terminal UI along with text-only or JSON output formats. Additionally, it includes automatic test case minimization for efficient triage and integrates seamlessly into the development workflow. The tool also reports maximum gas usage during fuzzing activities and supports complex contract initialization through Etheno and Truffle, enhancing its usability for developers. Ultimately, Echidna stands out as a robust solution for ensuring the reliability and security of Ethereum smart contracts.
  • 6
    Atheris Reviews
    Atheris is a Python fuzzing engine guided by coverage, designed to test both Python code and native extensions developed for CPython. It is built on the foundation of libFuzzer, providing an effective method for identifying additional bugs when fuzzing native code. Atheris is compatible with Linux (both 32- and 64-bit) and Mac OS X, supporting Python versions ranging from 3.6 to 3.10. Featuring an integrated libFuzzer, it is well-suited for fuzzing Python applications, but when targeting native extensions, users may need to compile from source to ensure compatibility between the libFuzzer version in Atheris and their Clang installation. Since Atheris depends on libFuzzer, which is a component of Clang, users of Apple Clang will need to install a different version of LLVM, as the default does not include libFuzzer. The implementation of Atheris as a coverage-guided, mutation-based fuzzer (LibFuzzer) simplifies the setup process by eliminating the need for input grammar definition. However, this approach can complicate the generation of inputs for code that processes intricate data structures. Consequently, while Atheris offers ease of use in many scenarios, it may face challenges when dealing with more complex parsing requirements.
  • 7
    syzkaller Reviews
    Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.
  • 8
    VectorCAST Reviews
    VectorCAST is an extensive test-automation framework aimed at optimizing unit, integration, and system testing throughout the embedded software development process. It facilitates the automation of test case creation and execution for applications written in C, C++, and Ada, while also accommodating host, target, and continuous integration environments. Additionally, VectorCAST provides structural code coverage metrics, which are essential for ensuring the validation of safety-critical and mission-critical systems. The tool seamlessly integrates with simulation processes such as software-in-the-loop and processor-in-the-loop, and it works with model-based engineering tools like Simulink/Embedded Coder. It also supports advanced white-box testing techniques, including dynamic instrumentation, fault injection, and the generation of test harnesses, effectively combining static analysis results—like those from Polyspace—with dynamic coverage to ensure comprehensive lifecycle verification. Among its significant features are the ability to correlate requirements with tests and the management and reporting of coverage across different configurations, ultimately enhancing the testing process. Overall, VectorCAST empowers organizations to achieve more reliable and efficient testing in their software development endeavors.
  • 9
    Google OSS-Fuzz Reviews
    OSS-Fuzz provides ongoing fuzz testing for open source applications, a method renowned for identifying programming flaws. Such flaws, including buffer overflow vulnerabilities, can pose significant security risks. Through the implementation of guided in-process fuzzing on Chrome components, Google has discovered thousands of security weaknesses and stability issues, and now aims to extend this beneficial service to the open source community. The primary objective of OSS-Fuzz is to enhance the security and stability of frequently used open source software by integrating advanced fuzzing methodologies with a scalable and distributed framework. For projects that are ineligible for OSS-Fuzz, there are alternatives available, such as running personal instances of ClusterFuzz or ClusterFuzzLite. At present, OSS-Fuzz is compatible with languages including C/C++, Rust, Go, Python, and Java/JVM, with the possibility of supporting additional languages that are compatible with LLVM. Furthermore, OSS-Fuzz facilitates fuzzing for both x86_64 and i386 architecture builds, ensuring a broad range of applications can benefit from this innovative testing approach. With this initiative, we hope to build a safer software ecosystem for all users.
  • 10
    american fuzzy lop Reviews
    American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.
  • 11
    BFuzz Reviews
    BFuzz is a tool designed for input-based fuzzing that utilizes HTML as its source input, launching a new instance of your browser to execute various test cases created by the domato generator located in the recurve directory. In addition, BFuzz automates the process by repeatedly performing the same operations without altering any of the test cases. When you run BFuzz, it prompts you to choose between fuzzing Chrome or Firefox; however, it specifically opens Firefox from the recurve directory and generates logs in the terminal. This lightweight script facilitates the opening of a browser and the execution of test cases, which are systematically generated by the domato tool and include the main scripting functionality. Furthermore, the script incorporates supplementary helper code that is essential for effective DOM fuzzing, enhancing the overall testing process. Its streamlined design makes it an efficient choice for developers looking to perform thorough web application testing.
  • 12
    afl-unicorn Reviews
    AFL-Unicorn provides the capability to fuzz any binary that can be emulated using the Unicorn Engine, allowing you to target specific code segments for testing. If you can emulate the desired code with the Unicorn Engine, you can effectively use AFL-Unicorn for fuzzing purposes. The Unicorn Mode incorporates block-edge instrumentation similar to what AFL's QEMU mode employs, enabling AFL to gather block coverage information from the emulated code snippets to drive its input generation process. The key to this functionality lies in the careful setup of a Unicorn-based test harness, which is responsible for loading the target code, initializing the state, and incorporating data mutated by AFL from its disk storage. After establishing these parameters, the test harness emulates the binary code of the target, and upon encountering a crash or error, triggers a signal to indicate the issue. While this framework has primarily been tested on Ubuntu 16.04 LTS, it is designed to be compatible with any operating system that can run both AFL and Unicorn without issues. With this setup, developers can enhance their fuzzing efforts and improve their binary analysis workflows significantly.
  • 13
    Awesome Fuzzing Reviews
    Awesome Fuzzing serves as a comprehensive compilation of resources for those interested in the field of fuzzing, encompassing an array of materials such as books, both free and paid courses, videos, tools, tutorials, and vulnerable applications ideal for hands-on practice to enhance one's understanding of fuzzing and the early stages of exploit development, including root cause analysis. It features instructional videos focused on fuzzing methodologies, essential tools, and recommended practices, alongside conference presentations, tutorials, and blogs dedicated to the subject. Additionally, it includes software tools that facilitate fuzzing of applications, particularly those utilizing network protocols like HTTP, SSH, and SMTP. Users are encouraged to search for and select exploits linked to downloadable applications, where they can then recreate the exploits with their preferred fuzzer. The resource also encompasses a range of tests tailored for fuzzing engines, highlighting various well-known vulnerabilities and providing a corpus of diverse file formats to enable fuzzing across multiple targets found in the existing fuzzing literature. Ultimately, this collection aims to empower learners with the necessary knowledge and skills to effectively engage with fuzzing techniques and develop their expertise in security testing.
  • 14
    Honggfuzz Reviews
    Honggfuzz is a software fuzzer focused on enhancing security through its advanced fuzzing techniques. It employs evolutionary and feedback-driven methods that rely on both software and hardware-based code coverage. This tool is designed to operate in a multi-process and multi-threaded environment, allowing users to maximize their CPU's potential without needing to launch multiple fuzzer instances. The file corpus is seamlessly shared and refined across all processes undergoing fuzzing, which greatly enhances efficiency. When persistent fuzzing mode is activated, Honggfuzz exhibits remarkable speed, capable of executing a simple or empty LLVMFuzzerTestOneInput function at an impressive rate of up to one million iterations per second on modern CPUs. It has a proven history of identifying security vulnerabilities, including the notable discovery of the only critical vulnerability in OpenSSL to date. Unlike other fuzzing tools, Honggfuzz can detect and report on hijacked or ignored signals that result from crashes, making it a valuable asset for identifying hidden issues within fuzzed programs. Its robust features make it an essential tool for security researchers aiming to uncover hidden flaws in software systems.
  • 15
    Google ClusterFuzz Reviews
    ClusterFuzz serves as an expansive fuzzing framework designed to uncover security vulnerabilities and stability flaws in software applications. Employed by Google, it is utilized for testing all of its products and acts as the fuzzing engine for OSS-Fuzz. This infrastructure boasts a wide array of features that facilitate the seamless incorporation of fuzzing into the software development lifecycle. It offers fully automated processes for bug filing, triaging, and resolution across multiple issue tracking systems. The system supports a variety of coverage-guided fuzzing engines, optimizing results through ensemble fuzzing and diverse fuzzing methodologies. Additionally, it provides statistical insights for assessing fuzzer effectiveness and monitoring crash incidence rates. Users can navigate an intuitive web interface that simplifies the management of fuzzing activities and crash reviews. Furthermore, ClusterFuzz is compatible with various authentication systems via Firebase and includes capabilities for black-box fuzzing, minimizing test cases, and identifying regressions through bisection. In summary, this robust tool enhances software quality and security, making it invaluable for developers seeking to improve their applications.
  • 16
    ClusterFuzz Reviews
    ClusterFuzz is an advanced fuzzing platform designed to identify security vulnerabilities and stability problems within software applications. Utilized by Google for all its products, it also serves as the fuzzing backend for OSS-Fuzz. This infrastructure offers a plethora of features that facilitate the integration of fuzzing into the development lifecycle of software projects. It includes fully automated processes for bug filing, triage, and resolution across different issue trackers. Moreover, it supports various coverage-guided fuzzing engines to achieve optimal outcomes through techniques like ensemble fuzzing and diverse fuzzing strategies. The platform provides detailed statistics for evaluating fuzzer efficiency and tracking crash rates. Its user-friendly web interface simplifies management tasks and crash examinations, while it also accommodates multiple authentication providers via Firebase. Additionally, ClusterFuzz supports black-box fuzzing, minimizes test cases, and employs regression identification through bisection techniques, making it a comprehensive solution for software testing. The versatility and robustness of ClusterFuzz truly enhance the software development process.
  • 17
    Solidity Fuzzing Boilerplate Reviews
    The Solidity Fuzzing Boilerplate serves as a foundational template designed to simplify the fuzzing process for various components within Solidity projects, particularly libraries. By writing tests just once, developers can easily execute them using both Echidna and Foundry's fuzzing tools. In instances where components require different versions of Solidity, these can be deployed into a Ganache instance with the help of Etheno. To generate intricate fuzzing inputs or to conduct differential fuzzing by comparing outputs with non-EVM executables, HEVM's FFI cheat code can be utilized effectively. Additionally, you can publish the results of your fuzzing experiments without concerns about licensing issues by modifying the shell script to retrieve specific files. If you do not plan to use shell commands from your Solidity contracts, it is advisable to disable FFI since it can be slow and should primarily serve as a workaround. This functionality proves beneficial when testing against complex implementations that are challenging to replicate in Solidity but are available in other programming languages. It is essential to review the commands being executed before running tests in projects that have FFI activated, ensuring a clear understanding of the operations taking place. Always prioritize clarity in your testing approach to maintain the integrity and effectiveness of your fuzzing efforts.
  • 18
    Sulley Reviews
    Sulley is a comprehensive fuzz testing framework and engine that incorporates various extensible components. In my view, it surpasses the functionality of most previously established fuzzing technologies, regardless of whether they are commercial or available in the public domain. The framework is designed to streamline not only the representation of data but also its transmission and instrumentation processes. As a fully automated fuzzing solution developed entirely in Python, Sulley operates without requiring human intervention. Beyond impressive capabilities in data generation, Sulley offers a range of essential features expected from a contemporary fuzzer. It meticulously monitors network activity and keeps detailed records for thorough analysis. Additionally, Sulley is equipped to instrument and evaluate the health of the target system, with the ability to revert to a stable state using various methods when necessary. It efficiently detects, tracks, and categorizes faults that arise during testing. Furthermore, Sulley has the capability to perform fuzzing in parallel, which dramatically enhances testing speed. It can also autonomously identify unique sequences of test cases that lead to faults, thereby improving the overall effectiveness of the testing process. This combination of features positions Sulley as a powerful tool for security testing and vulnerability detection.
  • 19
    Jazzer Reviews

    Jazzer

    Code Intelligence

    Free
    Jazzer, created by Code Intelligence, is a coverage-guided fuzzer designed for the JVM platform that operates within the process. It draws inspiration from libFuzzer, incorporating several of its advanced mutation features powered by instrumentation into the JVM environment. Users can explore Jazzer's autofuzz mode via Docker, which autonomously produces arguments for specified Java functions while also identifying and reporting any unexpected exceptions and security vulnerabilities that arise. Additionally, individuals can utilize the standalone Jazzer binary available in GitHub release archives, which initiates its own JVM specifically tailored for fuzzing tasks. This flexibility allows developers to effectively test their applications for robustness against various edge cases.
  • 20
    Fuzzbuzz Reviews
    The Fuzzbuzz workflow closely resembles other continuous integration and continuous delivery (CI/CD) testing processes, but it stands out because it necessitates the concurrent execution of multiple jobs, adding several additional steps. As a dedicated fuzz testing platform, Fuzzbuzz simplifies the integration of fuzz tests into developers' code, enabling them to execute these tests within their CI/CD pipelines, which is essential for identifying critical bugs and security vulnerabilities before they reach production. Fuzzbuzz seamlessly blends into your existing environment, providing support from the terminal through to CI/CD. You can easily write a fuzz test using your preferred IDE, terminal, or build tools, and once you push your code changes to CI/CD, Fuzzbuzz will automatically initiate the fuzz testing process on the latest updates. You'll receive notifications about any bugs detected through various channels like Slack, GitHub, or email, ensuring you're always informed. Additionally, as new changes are introduced, regressions are automatically tested and compared against previous results, allowing for continuous monitoring of code stability. The moment a change is detected, Fuzzbuzz builds and instruments your code, ensuring that your development process remains efficient and responsive. This proactive approach helps maintain high-quality code and reduces the risk of deploying flawed software.
  • 21
    FuzzDB Reviews
    FuzzDB was developed to enhance the chances of identifying security vulnerabilities in applications through dynamic testing methods. As the first and most extensive open repository of fault injection patterns, along with predictable resource locations and regex for server response matching, it serves as an invaluable resource. This comprehensive database includes detailed lists of attack payload primitives aimed at fault injection testing. The patterns are organized by type of attack and, where applicable, by the platform, and they are known to lead to vulnerabilities such as OS command injection, directory listings, directory traversals, source code exposure, file upload bypass, authentication bypass, cross-site scripting (XSS), HTTP header CRLF injections, SQL injection, NoSQL injection, and several others. For instance, FuzzDB identifies 56 patterns that might be interpreted as a null byte, in addition to offering lists of frequently used methods and name-value pairs that can activate debugging modes. Furthermore, the resource continuously evolves as it incorporates new findings and community contributions to stay relevant against emerging threats.
  • 22
    OWASP WSFuzzer Reviews
    Fuzz testing, commonly referred to as fuzzing, is a technique used in software testing that aims to discover implementation errors by injecting malformed or semi-malformed data in an automated way. For example, consider a scenario involving an integer variable within a program that captures a user's selection among three questions; the user's choice can be represented by the integers 0, 1, or 2, resulting in three distinct cases. Since integers are typically stored as fixed-size variables, a failure to implement the default switch case securely could lead to program crashes and various traditional security vulnerabilities. Fuzzing serves as an automated method for uncovering software implementation issues, enabling the identification of bugs when they occur. A fuzzer is a specialized tool designed to automatically inject semi-random data into the program stack, aiding in the detection of anomalies. The process of generating this data involves the use of generators, while the identification of vulnerabilities often depends on debugging tools that can analyze the program's behavior under the influence of the injected data. These generators typically utilize a mixture of established static fuzzing vectors to enhance the testing process, ultimately contributing to more robust software development practices.
  • 23
    APIFuzzer Reviews
    APIFuzzer analyzes your API specifications and systematically tests the fields to ensure your application can handle modified parameters, all without the need for programming. It allows you to import API definitions from either local files or remote URLs, supporting both JSON and YAML formats. Every HTTP method is accommodated, and it can fuzz the request body, query strings, path parameters, and request headers. Utilizing random mutations, it also integrates seamlessly with continuous integration systems. The tool can produce test reports in JUnit XML format and has the capability to send requests to alternative URLs. It supports HTTP basic authentication through configuration settings and stores reports of any failed tests in JSON format within a designated folder, thus ensuring that all results are easily accessible for review. Additionally, this enhances your ability to identify vulnerabilities and improve the reliability of your API.
  • 24
    Radamsa Reviews
    Radamsa serves as a robust test case generator specifically designed for robustness testing and fuzzing, aimed at evaluating how resilient a program is against malformed and potentially harmful inputs. By analyzing sample files containing valid data, it produces a variety of uniquely altered outputs that challenge the software's stability. One of the standout features of Radamsa is its proven track record in identifying numerous bugs in significant programs, alongside its straightforward scriptability and ease of deployment. Fuzzing, a key technique in uncovering unexpected program behaviors, involves exposing the software to a wide range of input types to observe the resultant actions. This process is divided into two main components: sourcing the diverse inputs and analyzing the outcomes, with Radamsa effectively addressing the first component, while a brief shell script generally handles the latter. Testers often possess a general understanding of potential failures and aim to validate whether those concerns are warranted through this method. Ultimately, Radamsa not only simplifies the testing process but also enhances the reliability of software applications by revealing hidden vulnerabilities.
  • 25
    Peach Fuzzer Reviews
    Peach is an advanced SmartFuzzer that excels in both generation and mutation-based fuzzing techniques. It necessitates the creation of Peach Pit files, which outline the data's structure, type information, and interrelations for effective fuzzing. In addition, Peach provides customizable configurations for a fuzzing session, such as selecting a data transport (publisher) and logging interface. Since its inception in 2004, Peach has undergone continuous development and is currently in its third major iteration. Fuzzing remains one of the quickest methods to uncover security vulnerabilities and identify bugs in software. By utilizing Peach for hardware fuzzing, students will gain insights into the essential principles of device fuzzing. Designed to address any data consumer, Peach can be applied to servers as well as embedded devices. A wide array of users, including researchers, companies, and government agencies, leverage Peach to detect hardware vulnerabilities. This course will specifically concentrate on employing Peach to target embedded devices while also gathering valuable information in case of a device crash, thus enhancing the understanding of fuzzing techniques in practical scenarios.
  • 26
    Fuzzing Project Reviews
    Fuzzing serves as an effective method for identifying software bugs. Essentially, it involves generating numerous randomly crafted inputs for the software to process in order to observe the outcomes. When a program crashes, it usually indicates that there is a problem. Despite being a widely recognized approach, it is often surprisingly straightforward to uncover bugs, including those with potential security risks, in commonly used software. Memory access errors, especially prevalent in programs developed in C/C++, tend to be the most frequently identified issues during fuzzing. While the specifics may vary, the underlying problem is typically that the software accesses incorrect memory locations. Modern Linux or BSD systems come equipped with a variety of fundamental tools designed for file display and parsing; however, most of these tools are ill-equipped to handle untrusted inputs in their present forms. Conversely, we now possess advanced tools that empower developers to detect and investigate these vulnerabilities more effectively. These innovations not only enhance security but also contribute to the overall stability of software systems.
  • 27
    beSTORM Reviews

    beSTORM

    Beyond Security (Fortra)

    $50,000.00/one-time
    Without access to source code, discover and certify security weaknesses in any product. Any protocol or hardware can be tested with beSTORM. This includes those used in IoT and process control, CANbus-compatible automotive and aerospace. Realtime fuzzing is possible without needing access to the source code. There are no cases to download. One platform, one GUI to use, with more than 250+ pre-built protocol testing modules, and the ability to create custom and proprietary ones. Identify security flaws before deployment. These are the ones that are most commonly discovered by outside actors after release. In your own testing center, certify vendor components and your applications. Software module self-learning and propriety testing. Scalability and customization for all business sizes. Automate the generation and delivery of near infinite attack vectors. Also, document any product failures. Record every pass/fail and manually engineer the exact command that caused each failure.
  • 28
    ToothPicker Reviews

    ToothPicker

    Secure Mobile Networking Lab

    Free
    ToothPicker serves as an innovative in-process, coverage-guided fuzzer specifically designed for iOS, focusing on the Bluetooth daemon and various Bluetooth protocols. Utilizing FRIDA as its foundation, this tool can be tailored to function on any platform compatible with FRIDA. The repository also features an over-the-air fuzzer that showcases an example implementation for fuzzing Apple's MagicPairing protocol through InternalBlue. Furthermore, it includes the ReplayCrashFile script, which aids in confirming any crashes identified by the in-process fuzzer. This simple fuzzer operates by flipping bits and bytes in inactive connections, lacking coverage or injection, yet it serves effectively as a demonstration and is stateful. It requires only Python and Frida to operate, eliminating the need for additional modules or installations. Built upon the frizzer codebase, it's advisable to establish a virtual Python environment for optimal performance with frizzer. Notably, with the introduction of the iPhone XR/Xs, the PAC (Pointer Authentication Code) feature has been implemented. This advancement underscores the necessity for continuous adaptation of fuzzing tools like ToothPicker to keep pace with evolving iOS security measures.
  • 29
    Defensics Fuzz Testing Reviews
    Defensics Fuzz Testing is a robust and flexible automated black box fuzzer that helps organizations efficiently identify and address vulnerabilities in their software. This generational fuzzer employs a smart, focused methodology for negative testing, allowing users to create custom test cases through advanced file and protocol templates. Additionally, the software development kit (SDK) empowers proficient users to leverage the Defensics framework to craft their own unique test scenarios. Being a black box fuzzer means that Defensics operates without the need for source code, which adds to its accessibility. By utilizing Defensics, organizations can enhance the security of their cyber supply chain, ensuring that their software and devices are interoperable, resilient, high-quality, and secure prior to deployment in IT or laboratory settings. This versatile tool seamlessly integrates into various development workflows, including both traditional Software Development Life Cycle (SDL) and Continuous Integration (CI) environments. Furthermore, its API and data export functions facilitate smooth integration with other technologies, establishing it as a truly plug-and-play solution for fuzz testing. As a result, Defensics not only enhances security but also streamlines the overall software development process.
  • 30
    Boofuzz Reviews
    Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.
  • 31
    API Fuzzer Reviews
    API Fuzzer is a tool designed to perform fuzz-testing on attributes by employing prevalent penetration testing methods while identifying potential vulnerabilities. By taking an API request as its input, the API Fuzzer gem effectively outputs a list of possible vulnerabilities inherent in the API, which may include risks such as cross-site scripting, SQL injection, blind SQL injection, XML external entity vulnerabilities, insecure direct object references (IDOR), issues with API rate limiting, open redirect vulnerabilities, information disclosure flaws, information leakage through headers, and cross-site request forgery vulnerabilities. This comprehensive evaluation helps developers enhance the security of their APIs by pinpointing critical areas that require attention and remediation.
  • 32
    BlackArch Fuzzer Reviews
    BlackArch is a penetration testing distribution that builds upon ArchLinux. The BlackArch Fuzzer offers a variety of packages designed to utilize the principles of fuzz testing effectively. This toolset is particularly beneficial for security researchers and developers looking to identify vulnerabilities in their applications.
  • 33
    WebKing Reviews
    Contemporary websites are intricate n-tier software systems equipped with web interfaces. In their quest for reliable development tools akin to those utilized in other programming environments, developers have expressed a need for enhanced support in web development. Consequently, we have introduced WebKing, a groundbreaking tool designed to help developers identify and rectify errors during the construction of n-tier web applications. By leveraging established testing methodologies that have proven effective in enhancing the quality of C/C++ and Java code, WebKing seamlessly integrates these techniques into dynamic web application development. With WebKing, web developers can automate various testing processes, including white-box, black-box, and regression testing, in addition to a novel approach known as web-box testing, which allows for unit testing of dynamic web pages. This comprehensive suite of testing capabilities empowers developers to ensure their applications are robust and dependable.
  • 34
    OpenClover Reviews
    Allocate your efforts wisely between developing applications and writing corresponding test code. For Java and Groovy, utilizing an advanced code coverage tool is essential, and OpenClover stands out by evaluating code coverage while also gathering over 20 different metrics. This tool highlights the areas of your application that lack testing and integrates coverage data with metrics to identify the most vulnerable sections of your code. Additionally, its Test Optimization feature monitors the relationship between test cases and application classes, allowing OpenClover to execute only the tests pertinent to any modifications made, which greatly enhances the efficiency of test execution time. You may wonder if testing simple getters and setters or machine-generated code is truly beneficial. OpenClover excels in its adaptability, enabling users to tailor coverage measurement by excluding specific packages, files, classes, methods, and even individual statements. This flexibility allows you to concentrate your testing efforts on the most critical components of your codebase. Moreover, OpenClover not only logs the results of tests but also provides detailed coverage analysis for each individual test, ensuring that you have a thorough understanding of your testing effectiveness. Emphasizing such precision can lead to significant improvements in code quality and reliability.
  • 35
    JCov Reviews
    The JCov open-source initiative is designed to collect quality metrics related to the development of test suites. By making JCov accessible, the project aims to enhance the verification of regression test executions within OpenJDK development. The primary goal of JCov is to ensure transparency regarding test coverage metrics. Promoting a standard coverage tool like JCov benefits OpenJDK developers by providing a code coverage solution that evolves in harmony with advancements in the Java language and VM. JCov is entirely implemented in Java and serves as a tool to assess and analyze dynamic code coverage for Java applications. It offers features that measure method, linear block, and branch coverage, while also identifying execution paths that remain uncovered. Additionally, JCov can annotate the program's source code with coverage data. From a testing standpoint, JCov is particularly valuable for identifying execution paths and understanding how different pieces of code are exercised during testing. This detailed insight helps developers enhance their testing strategies and improve overall code quality.
  • 36
    OpenCppCoverage Reviews
    OpenCppCoverage is a free and open-source tool designed for measuring code coverage in C++ applications on Windows platforms. Primarily aimed at enhancing unit testing, it also aids in identifying executed lines during program debugging. The tool is compatible with compilers that generate program database files (.pdb) and allows users to execute their programs without the need for recompilation. Users can exclude specific lines based on regular expressions, and it offers coverage aggregation, enabling the merging of multiple coverage reports into a singular comprehensive document. It requires Microsoft Visual Studio 2008 or newer, including the Express edition, although it may also function with earlier versions of Visual Studio. Furthermore, tests can be conveniently run through the Test Explorer window, streamlining the testing process for developers. This versatility makes OpenCppCoverage a valuable asset for those focused on maintaining high code quality.
  • 37
    Wfuzz Reviews
    Wfuzz offers a powerful platform for automating the assessment of web application security, assisting users in identifying and exploiting potential vulnerabilities to enhance the safety of their web applications. Additionally, it can be executed using the official Docker image for convenience. The core functionality of Wfuzz is based on the straightforward principle of substituting any occurrence of the fuzz keyword with a specified payload, which serves as a source of data. This fundamental mechanism enables users to inject various inputs into any field within an HTTP request, facilitating intricate attacks on diverse components of web applications, including parameters, authentication mechanisms, forms, directories and files, headers, and more. Wfuzz's scanning capabilities for web application vulnerabilities are further enhanced by its plugin support, which allows for a wide range of functionalities. As a completely modular framework, Wfuzz invites even novice Python developers to contribute easily, as creating plugins is a straightforward process that requires only a few minutes to get started. By harnessing the power of Wfuzz, security professionals can significantly improve their web application defenses.
  • 38
    SimpleCov Reviews
    SimpleCov is a Ruby tool designed for code coverage analysis, leveraging Ruby's native Coverage library to collect data, while offering a user-friendly API that simplifies the processing of results by allowing you to filter, group, merge, format, and display them effectively. Although it excels in tracking the covered Ruby code, it does not support coverage for popular templating systems like erb, slim, and haml. For most projects, obtaining a comprehensive overview of coverage results across various types of tests, including Cucumber features, is essential. SimpleCov simplifies this task by automatically caching and merging results for report generation, ensuring that your final report reflects coverage from all your test suites, thus providing a clearer picture of any areas that need improvement. It is important to ensure that SimpleCov is executed in the same process as the code for which you wish to analyze coverage, as this is crucial for accurate results. Additionally, utilizing SimpleCov can significantly enhance your development workflow by identifying untested code segments, ultimately leading to more robust applications.
  • 39
    Coverlet Reviews
    Coverlet functions with the .NET Framework on Windows and with .NET Core across all compatible platforms. It provides coverage specifically for deterministic builds. Currently, the existing solution is less than ideal and requires a workaround. For those who wish to view Coverlet's output within Visual Studio while coding, various add-ins are available depending on the platform in use. Additionally, Coverlet seamlessly connects with the build system to execute code coverage post-testing. Activating code coverage is straightforward; you simply need to set the CollectCoverage property to true. To use the Coverlet tool, you must indicate the path to the assembly housing the unit tests. Furthermore, you are required to define both the test runner and the associated arguments by utilizing the --target and --targetargs options. It's crucial that the invocation of the test runner with these arguments does not necessitate recompiling the unit test assembly, as this would prevent the generation of coverage results. Proper configuration and understanding of these aspects will ensure a smoother experience when using Coverlet for code coverage.
  • 40
    NCover Reviews
    NCover Desktop is a Windows-based tool designed to gather code coverage data for .NET applications and services. Once the coverage data is collected, users can view comprehensive charts and metrics through a browser interface that enables detailed analysis down to specific lines of source code. Additionally, users have the option to integrate a Visual Studio extension known as Bolt, which provides integrated code coverage features, showcasing unit test outcomes, execution times, branch coverage visualization, and highlighted source code directly within the Visual Studio IDE. This advancement in NCover Desktop significantly enhances the accessibility and functionality of code coverage solutions. By measuring code coverage during .NET testing, NCover offers insights into which parts of the code were executed, delivering precise metrics on unit test coverage. Monitoring these statistics over time allows developers to obtain a reliable gauge of code quality throughout the entire development process, ultimately leading to a more robust and well-tested application. By utilizing such tools, teams can ensure a higher standard of software reliability and performance.
  • 41
    RKTracer Reviews
    RKTracer is a sophisticated tool designed for code coverage and test analysis, allowing development teams to evaluate the thoroughness and effectiveness of their testing efforts across various stages, including unit, integration, functional, and system-level testing, all without needing to modify any existing application code or build process. This versatile tool is capable of instrumenting a wide range of environments, including host machines, simulators, emulators, embedded systems, and servers, while supporting a diverse set of programming languages such as C, C++, CUDA, C#, Java, Kotlin, JavaScript/TypeScript, Golang, Python, and Swift. RKTracer offers comprehensive coverage metrics, providing insights into function, statement, branch/decision, condition, MC/DC, and multi-condition coverage, along with the capability to generate delta-coverage reports that highlight newly added or altered code segments that are already under test. The integration of RKTracer into development workflows is straightforward; by simply prefixing the build or test command with “rktracer,” users can execute their tests and subsequently produce detailed HTML or XML reports suitable for CI/CD systems or integration with dashboards like SonarQube. Ultimately, RKTracer empowers teams to enhance their testing practices and improve overall software quality effectively.
  • 42
    PACE Anti-Piracy Reviews
    Mobile and desktop applications often harbor vulnerabilities that can lead to the exposure of sensitive customer data and jeopardize intellectual property. PACE Anti-Piracy stands as a frontrunner in the realm of software protection, having offered licensing platform solutions since 1985. Leveraging extensive experience and dedicated research and development, PACE has crafted cutting-edge security tools specifically designed for anti-tampering and white-box cryptography. Fusion, one of our proprietary technologies, integrates seamlessly with your binary code, safeguarding your software from potential tampering or unauthorized modifications by malicious actors. This protection encompasses both obfuscation and anti-tampering measures. Recognized as a leader in software and plug-in licensing, PACE delivers a versatile, fully-hosted platform that provides an all-encompassing solution for publishers aiming to launch their products in the market. The white-box works component is our latest offering within the white-box sector, featuring an innovative architecture that enhances security measures to protect keys and sensitive data right at the endpoint, making it a vital tool for modern software security. Additionally, our commitment to continuous improvement ensures that we stay ahead in a rapidly evolving technological landscape.
  • 43
    dotCover Reviews

    dotCover

    JetBrains

    $399 per user per year
    dotCover is a powerful code coverage and unit testing tool designed for .NET that seamlessly integrates into Visual Studio and JetBrains Rider. This tool allows developers to assess the extent of their code's unit test coverage while offering intuitive visualization features and is compatible with Continuous Integration systems. It effectively calculates and reports statement-level code coverage for various platforms including .NET Framework, .NET Core, and Mono for Unity. As a plug-in to popular IDEs, dotCover enables users to analyze and visualize coverage directly within their coding environment, facilitating the execution of unit tests and the review of coverage outcomes without having to switch contexts. Additionally, it boasts support for customizable color themes, new icons, and an updated menu interface. Bundled with a unit test runner shared with ReSharper, another JetBrains product for .NET developers, dotCover enhances the testing experience. It also supports continuous testing, allowing it to dynamically identify which unit tests are impacted by code modifications as they occur. This real-time analysis ensures that developers can maintain high code quality throughout the development process.
  • 44
    Coverage.py Reviews
    Coverage.py serves as a powerful utility for assessing the code coverage of Python applications. It tracks the execution of your program, recording which segments of the code have been activated, and subsequently reviews the source to pinpoint areas that could have been executed yet remained inactive. This measurement of coverage is primarily utilized to evaluate the efficacy of testing efforts. It provides insights into which portions of your code are being tested and which are left untested. To collect data, you can use the command `coverage run` to execute your test suite. Regardless of how you typically run your tests, you can incorporate coverage by executing your test runner with the coverage tool. If the command for your test runner begins with "python," simply substitute the initial "python" with "coverage run." To restrict coverage evaluation to only the code within the current directory and to identify files that have not been executed at all, include the source parameter in your coverage command. By default, Coverage.py measures line coverage, but it is also capable of assessing branch coverage. Additionally, it provides information on which specific tests executed particular lines of code, enhancing your understanding of test effectiveness. This comprehensive approach to coverage analysis can significantly improve the quality and reliability of your codebase.
  • 45
    Coco Code Coverage Reviews
    Coco is a comprehensive code coverage solution designed for modern software development across both embedded systems and desktop applications. It empowers developers, QA engineers, and compliance teams to measure and improve test coverage through function, branch, decision, condition, and MC/DC coverage metrics. With support for multiple languages and toolchains—including GCC, Clang, MSBuild, ARM, QNX, and Green Hills—Coco integrates seamlessly into existing CI/CD workflows without requiring code refactoring. Teams can quickly detect coverage gaps, streamline regression testing, and remove redundant test cases to shorten validation cycles. For regulated industries like automotive, aerospace, and healthcare, Coco delivers qualification kits and pre-built certification artifacts to support ISO 26262 and DO-178C compliance. The Coco Cross-Compilation Add-on extends capabilities to embedded Linux, RTOS, and bare-metal targets, offering full traceability from test execution to certification. Its integration with Test Center provides real-time analytics, visualization, and organization-wide reporting for test intelligence. With Coco, development teams gain transparency, speed, and trust in every release cycle.