Best Chainlit Alternatives in 2025
Find the top alternatives to Chainlit currently available. Compare ratings, reviews, pricing, and features of Chainlit alternatives in 2025. Slashdot lists the best Chainlit alternatives on the market that offer competing products that are similar to Chainlit. Sort through Chainlit alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
677 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Google AI Studio
Google
4 RatingsGoogle AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels. The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations. Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster. -
3
LM-Kit.NET
LM-Kit
8 RatingsLM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide. -
4
Flowise
Flowise AI
FreeFlowise is a versatile open-source platform that simplifies the creation of tailored Large Language Model (LLM) applications using an intuitive drag-and-drop interface designed for low-code development. This platform accommodates connections with multiple LLMs, such as LangChain and LlamaIndex, and boasts more than 100 integrations to support the building of AI agents and orchestration workflows. Additionally, Flowise offers a variety of APIs, SDKs, and embedded widgets that enable smooth integration into pre-existing systems, ensuring compatibility across different platforms, including deployment in isolated environments using local LLMs and vector databases. As a result, developers can efficiently create and manage sophisticated AI solutions with minimal technical barriers. -
5
Lunary
Lunary
$20 per monthLunary serves as a platform for AI developers, facilitating the management, enhancement, and safeguarding of Large Language Model (LLM) chatbots. It encompasses a suite of features, including tracking conversations and feedback, analytics for costs and performance, debugging tools, and a prompt directory that supports version control and team collaboration. The platform is compatible with various LLMs and frameworks like OpenAI and LangChain and offers SDKs compatible with both Python and JavaScript. Additionally, Lunary incorporates guardrails designed to prevent malicious prompts and protect against sensitive data breaches. Users can deploy Lunary within their VPC using Kubernetes or Docker, enabling teams to evaluate LLM responses effectively. The platform allows for an understanding of the languages spoken by users, experimentation with different prompts and LLM models, and offers rapid search and filtering capabilities. Notifications are sent out when agents fail to meet performance expectations, ensuring timely interventions. With Lunary's core platform being fully open-source, users can choose to self-host or utilize cloud options, making it easy to get started in a matter of minutes. Overall, Lunary equips AI teams with the necessary tools to optimize their chatbot systems while maintaining high standards of security and performance. -
6
Literal AI
Literal AI
Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects. -
7
NVIDIA NeMo Guardrails
NVIDIA
NVIDIA NeMo Guardrails serves as an open-source toolkit aimed at improving the safety, security, and compliance of conversational applications powered by large language models. This toolkit empowers developers to establish, coordinate, and enforce various AI guardrails, thereby ensuring that interactions with generative AI remain precise, suitable, and relevant. Utilizing Colang, a dedicated language for crafting adaptable dialogue flows, it integrates effortlessly with renowned AI development frameworks such as LangChain and LlamaIndex. NeMo Guardrails provides a range of functionalities, including content safety measures, topic regulation, detection of personally identifiable information, enforcement of retrieval-augmented generation, and prevention of jailbreak scenarios. Furthermore, the newly launched NeMo Guardrails microservice streamlines rail orchestration, offering API-based interaction along with tools that facilitate improved management and maintenance of guardrails. This advancement signifies a critical step toward more responsible AI deployment in conversational contexts. -
8
Llama Guard
Meta
Llama Guard is a collaborative open-source safety model created by Meta AI aimed at improving the security of large language models during interactions with humans. It operates as a filtering mechanism for inputs and outputs, categorizing both prompts and replies based on potential safety risks such as toxicity, hate speech, and false information. With training on a meticulously selected dataset, Llama Guard's performance rivals or surpasses that of existing moderation frameworks, including OpenAI's Moderation API and ToxicChat. This model features an instruction-tuned framework that permits developers to tailor its classification system and output styles to cater to specific applications. As a component of Meta's extensive "Purple Llama" project, it integrates both proactive and reactive security measures to ensure the responsible use of generative AI technologies. The availability of the model weights in the public domain invites additional exploration and modifications to address the continually changing landscape of AI safety concerns, fostering innovation and collaboration in the field. This open-access approach not only enhances the community's ability to experiment but also promotes a shared commitment to ethical AI development. -
9
OpenPipe
OpenPipe
$1.20 per 1M tokensOpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features. -
10
Klu
Klu
$97Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools. -
11
Dify
Dify
Dify serves as an open-source platform aimed at enhancing the efficiency of developing and managing generative AI applications. It includes a wide array of tools, such as a user-friendly orchestration studio for designing visual workflows, a Prompt IDE for testing and refining prompts, and advanced LLMOps features for the oversight and enhancement of large language models. With support for integration with multiple LLMs, including OpenAI's GPT series and open-source solutions like Llama, Dify offers developers the versatility to choose models that align with their specific requirements. Furthermore, its Backend-as-a-Service (BaaS) capabilities allow for the effortless integration of AI features into existing enterprise infrastructures, promoting the development of AI-driven chatbots, tools for document summarization, and virtual assistants. This combination of tools and features positions Dify as a robust solution for enterprises looking to leverage generative AI technologies effectively. -
12
Parea
Parea
Parea is a prompt engineering platform designed to allow users to experiment with various prompt iterations, assess and contrast these prompts through multiple testing scenarios, and streamline the optimization process with a single click, in addition to offering sharing capabilities and more. Enhance your AI development process by leveraging key functionalities that enable you to discover and pinpoint the most effective prompts for your specific production needs. The platform facilitates side-by-side comparisons of prompts across different test cases, complete with evaluations, and allows for CSV imports of test cases, along with the creation of custom evaluation metrics. By automating the optimization of prompts and templates, Parea improves the outcomes of large language models, while also providing users the ability to view and manage all prompt versions, including the creation of OpenAI functions. Gain programmatic access to your prompts, which includes comprehensive observability and analytics features, helping you determine the costs, latency, and overall effectiveness of each prompt. Embark on the journey to refine your prompt engineering workflow with Parea today, as it empowers developers to significantly enhance the performance of their LLM applications through thorough testing and effective version control, ultimately fostering innovation in AI solutions. -
13
Semantic Kernel
Microsoft
FreeSemantic Kernel is an open-source development toolkit that facilitates the creation of AI agents and the integration of cutting-edge AI models into applications written in C#, Python, or Java. This efficient middleware accelerates the deployment of robust enterprise solutions. Companies like Microsoft and other Fortune 500 firms are taking advantage of Semantic Kernel's flexibility, modularity, and observability. With built-in security features such as telemetry support, hooks, and filters, developers can confidently provide responsible AI solutions at scale. The support for versions 1.0 and above across C#, Python, and Java ensures reliability and a commitment to maintaining non-breaking changes. Existing chat-based APIs can be effortlessly enhanced to include additional modalities such as voice and video, making the toolkit highly adaptable. Semantic Kernel is crafted to be future-proof, ensuring seamless integration with the latest AI models as technology evolves, thus maintaining its relevance in the rapidly changing landscape of artificial intelligence. This forward-thinking design empowers developers to innovate without fear of obsolescence. -
14
Voiceflow
Voiceflow
$40 per editor per monthTeams leverage Voiceflow to collaboratively design, test, and deploy conversational assistants more efficiently and at scale. With the platform, users can develop chat and voice interfaces for any digital product or conversational assistant seamlessly. It integrates various disciplines such as conversation design, product development, copywriting, and legal considerations into one cohesive process. Users can design, prototype, test, iterate, launch, and measure all within a single platform, eliminating functional silos and content disarray. Voiceflow empowers teams to operate within an interactive workspace that unifies all assistant-related data, including conversation flows, intents, utterances, response content, API calls, and additional elements. The platform's one-click prototyping feature helps avoid delays and extensive development efforts, allowing designers to create shareable, high-fidelity prototypes in just minutes to refine the user experience effectively. As the preferred choice for enhancing the speed and scalability of app delivery, Voiceflow also accelerates workflows with features such as drag-and-drop design, rapid prototyping, real-time feedback, and pre-built code, further streamlining the development process for teams. By harnessing these powerful tools, teams can significantly improve their collaborative efforts and optimize the overall quality of their conversational projects. -
15
Prompt flow
Microsoft
Prompt Flow is a comprehensive suite of development tools aimed at optimizing the entire development lifecycle of AI applications built on LLMs, encompassing everything from concept creation and prototyping to testing, evaluation, and final deployment. By simplifying the prompt engineering process, it empowers users to develop high-quality LLM applications efficiently. Users can design workflows that seamlessly combine LLMs, prompts, Python scripts, and various other tools into a cohesive executable flow. This platform enhances the debugging and iterative process, particularly by allowing users to easily trace interactions with LLMs. Furthermore, it provides capabilities to assess the performance and quality of flows using extensive datasets, while integrating the evaluation phase into your CI/CD pipeline to maintain high standards. The deployment process is streamlined, enabling users to effortlessly transfer their flows to their preferred serving platform or integrate them directly into their application code. Collaboration among team members is also improved through the utilization of the cloud-based version of Prompt Flow available on Azure AI, making it easier to work together on projects. This holistic approach to development not only enhances efficiency but also fosters innovation in LLM application creation. -
16
ConfidentialMind
ConfidentialMind
We have taken the initiative to bundle and set up all necessary components for crafting solutions and seamlessly integrating LLMs into your organizational workflows. With ConfidentialMind, you can immediately get started. It provides an endpoint for the most advanced open-source LLMs, such as Llama-2, effectively transforming it into an internal LLM API. Envision having ChatGPT operating within your personal cloud environment. This represents the utmost in security solutions available. It connects with the APIs of leading hosted LLM providers, including Azure OpenAI, AWS Bedrock, and IBM, ensuring comprehensive integration. Additionally, ConfidentialMind features a playground UI built on Streamlit, which offers a variety of LLM-driven productivity tools tailored for your organization, including writing assistants and document analysis tools. It also comes with a vector database, essential for efficiently sifting through extensive knowledge repositories containing thousands of documents. Furthermore, it empowers you to manage access to the solutions developed by your team and regulate what information the LLMs can access, enhancing data security and control. With these capabilities, you can drive innovation while ensuring compliance and safety within your business operations. -
17
LlamaIndex
LlamaIndex
LlamaIndex serves as a versatile "data framework" designed to assist in the development of applications powered by large language models (LLMs). It enables the integration of semi-structured data from various APIs, including Slack, Salesforce, and Notion. This straightforward yet adaptable framework facilitates the connection of custom data sources to LLMs, enhancing the capabilities of your applications with essential data tools. By linking your existing data formats—such as APIs, PDFs, documents, and SQL databases—you can effectively utilize them within your LLM applications. Furthermore, you can store and index your data for various applications, ensuring seamless integration with downstream vector storage and database services. LlamaIndex also offers a query interface that allows users to input any prompt related to their data, yielding responses that are enriched with knowledge. It allows for the connection of unstructured data sources, including documents, raw text files, PDFs, videos, and images, while also making it simple to incorporate structured data from sources like Excel or SQL. Additionally, LlamaIndex provides methods for organizing your data through indices and graphs, making it more accessible for use with LLMs, thereby enhancing the overall user experience and expanding the potential applications. -
18
Instructor
Instructor
FreeInstructor serves as a powerful tool for developers who wish to derive structured data from natural language input by utilizing Large Language Models (LLMs). By integrating seamlessly with Python's Pydantic library, it enables users to specify the desired output structures through type hints, which not only streamlines schema validation but also enhances compatibility with various integrated development environments (IDEs). The platform is compatible with multiple LLM providers such as OpenAI, Anthropic, Litellm, and Cohere, thus offering a wide range of implementation options. Its customizable features allow users to define specific validators and tailor error messages, significantly improving the data validation workflow. Trusted by engineers from notable platforms like Langflow, Instructor demonstrates a high level of reliability and effectiveness in managing structured outputs driven by LLMs. Additionally, the reliance on Pydantic and type hints simplifies the process of schema validation and prompting, requiring less effort and code from developers while ensuring smooth integration with their IDEs. This adaptability makes Instructor an invaluable asset for developers looking to enhance their data extraction and validation processes. -
19
Langdock
Langdock
FreeSupport for ChatGPT and LangChain is now natively integrated, with additional platforms like Bing and HuggingFace on the horizon. You can either manually input your API documentation or import it using an existing OpenAPI specification. Gain insights into the request prompt, parameters, headers, body, and other relevant data. Furthermore, you can monitor comprehensive live metrics regarding your plugin's performance, such as latencies and errors. Tailor your own dashboards to track funnels and aggregate various metrics for deeper analysis. This functionality empowers users to optimize their systems effectively. -
20
LangSmith
LangChain
Unexpected outcomes are a common occurrence in software development. With complete insight into the entire sequence of calls, developers can pinpoint the origins of errors and unexpected results in real time with remarkable accuracy. The discipline of software engineering heavily depends on unit testing to create efficient and production-ready software solutions. LangSmith offers similar capabilities tailored specifically for LLM applications. You can quickly generate test datasets, execute your applications on them, and analyze the results without leaving the LangSmith platform. This tool provides essential observability for mission-critical applications with minimal coding effort. LangSmith is crafted to empower developers in navigating the complexities and leveraging the potential of LLMs. We aim to do more than just create tools; we are dedicated to establishing reliable best practices for developers. You can confidently build and deploy LLM applications, backed by comprehensive application usage statistics. This includes gathering feedback, filtering traces, measuring costs and performance, curating datasets, comparing chain efficiencies, utilizing AI-assisted evaluations, and embracing industry-leading practices to enhance your development process. This holistic approach ensures that developers are well-equipped to handle the challenges of LLM integrations. -
21
Maxim
Maxim
$29 per monthMaxim is a enterprise-grade stack that enables AI teams to build applications with speed, reliability, and quality. Bring the best practices from traditional software development to your non-deterministic AI work flows. Playground for your rapid engineering needs. Iterate quickly and systematically with your team. Organise and version prompts away from the codebase. Test, iterate and deploy prompts with no code changes. Connect to your data, RAG Pipelines, and prompt tools. Chain prompts, other components and workflows together to create and test workflows. Unified framework for machine- and human-evaluation. Quantify improvements and regressions to deploy with confidence. Visualize the evaluation of large test suites and multiple versions. Simplify and scale human assessment pipelines. Integrate seamlessly into your CI/CD workflows. Monitor AI system usage in real-time and optimize it with speed. -
22
Pezzo
Pezzo
$0Pezzo serves as an open-source platform for LLMOps, specifically designed for developers and their teams. With merely two lines of code, users can effortlessly monitor and troubleshoot AI operations, streamline collaboration and prompt management in a unified location, and swiftly implement updates across various environments. This efficiency allows teams to focus more on innovation rather than operational challenges. -
23
LangChain provides a comprehensive framework that empowers developers to build and scale intelligent applications using large language models (LLMs). By integrating data and APIs, LangChain enables context-aware applications that can perform reasoning tasks. The suite includes LangGraph, a tool for orchestrating complex workflows, and LangSmith, a platform for monitoring and optimizing LLM-driven agents. LangChain supports the full lifecycle of LLM applications, offering tools to handle everything from initial design and deployment to post-launch performance management. Its flexibility makes it an ideal solution for businesses looking to enhance their applications with AI-powered reasoning and automation.
-
24
Lamatic.ai
Lamatic.ai
$100 per monthIntroducing a comprehensive managed PaaS that features a low-code visual builder, VectorDB, along with integrations for various applications and models, designed for the creation, testing, and deployment of high-performance AI applications on the edge. This solution eliminates inefficient and error-prone tasks, allowing users to simply drag and drop models, applications, data, and agents to discover the most effective combinations. You can deploy solutions in less than 60 seconds while significantly reducing latency. The platform supports seamless observation, testing, and iteration processes, ensuring that you maintain visibility and utilize tools that guarantee precision and dependability. Make informed, data-driven decisions with detailed reports on requests, LLM interactions, and usage analytics, while also accessing real-time traces by node. The experimentation feature simplifies the optimization of various elements, including embeddings, prompts, and models, ensuring continuous enhancement. This platform provides everything necessary to launch and iterate at scale, backed by a vibrant community of innovative builders who share valuable insights and experiences. The collective effort distills the most effective tips and techniques for developing AI applications, resulting in an elegant solution that enables the creation of agentic systems with the efficiency of a large team. Furthermore, its intuitive and user-friendly interface fosters seamless collaboration and management of AI applications, making it accessible for everyone involved. -
25
Portkey
Portkey.ai
$49 per monthLMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey! -
26
Metal
Metal
$25 per monthMetal serves as a comprehensive, fully-managed machine learning retrieval platform ready for production. With Metal, you can uncover insights from your unstructured data by leveraging embeddings effectively. It operates as a managed service, enabling the development of AI products without the complications associated with infrastructure management. The platform supports various integrations, including OpenAI and CLIP, among others. You can efficiently process and segment your documents, maximizing the benefits of our system in live environments. The MetalRetriever can be easily integrated, and a straightforward /search endpoint facilitates running approximate nearest neighbor (ANN) queries. You can begin your journey with a free account, and Metal provides API keys for accessing our API and SDKs seamlessly. By using your API Key, you can authenticate by adjusting the headers accordingly. Our Typescript SDK is available to help you incorporate Metal into your application, although it's also compatible with JavaScript. There is a mechanism to programmatically fine-tune your specific machine learning model, and you also gain access to an indexed vector database containing your embeddings. Additionally, Metal offers resources tailored to represent your unique ML use-case, ensuring you have the tools needed for your specific requirements. Furthermore, this flexibility allows developers to adapt the service to various applications across different industries. -
27
Oumi
Oumi
FreeOumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases. -
28
SuperAGI SuperCoder
SuperAGI
FreeSuperAGI SuperCoder is an innovative open-source autonomous platform that merges an AI-driven development environment with AI agents, facilitating fully autonomous software creation, beginning with the Python language and its frameworks. The latest iteration, SuperCoder 2.0, utilizes large language models and a Large Action Model (LAM) that has been specially fine-tuned for Python code generation, achieving remarkable accuracy in one-shot or few-shot coding scenarios, surpassing benchmarks like SWE-bench and Codebench. As a self-sufficient system, SuperCoder 2.0 incorporates tailored software guardrails specific to development frameworks, initially focusing on Flask and Django, while also utilizing SuperAGI’s Generally Intelligent Developer Agents to construct intricate real-world software solutions. Moreover, SuperCoder 2.0 offers deep integration with popular tools in the developer ecosystem, including Jira, GitHub or GitLab, Jenkins, and cloud-based QA solutions like BrowserStack and Selenium, ensuring a streamlined and efficient software development process. By combining cutting-edge technology with practical software engineering needs, SuperCoder 2.0 aims to redefine the landscape of automated software development. -
29
Discuro
Discuro
$34 per monthDiscuro serves as a comprehensive platform designed for developers aiming to effortlessly create, assess, and utilize intricate AI workflows. With our user-friendly interface, you can outline your workflow, and when you're set to run it, simply send us an API call accompanied by your inputs and any necessary metadata, while we take care of the execution. By employing an Orchestrator, you can seamlessly feed the data generated back into GPT-3, ensuring reliable integration with OpenAI and facilitating easy extraction of the required information. In just a few minutes, you can develop and utilize your own workflows, as we've equipped you with everything necessary for large-scale integration with OpenAI, allowing you to concentrate on product development. The initial hurdle in connecting with OpenAI is acquiring the data you need, but we simplify this by managing input/output definitions for you. You can effortlessly connect multiple completions to assemble extensive datasets. Additionally, leverage our iterative input capability to reintroduce GPT-3 outputs, enabling us to make successive calls that broaden your dataset and more. Overall, our platform empowers you to construct and evaluate sophisticated self-transforming AI workflows and datasets with remarkable ease and efficiency. -
30
Gen App Builder
Google
Gen App Builder stands out in the realm of generative AI solutions for developers, as it presents an orchestration layer that simplifies the integration of diverse enterprise systems alongside generative AI tools, thereby enhancing the overall user experience. It facilitates a guided orchestration process for search and conversational applications, complete with pre-made workflows for frequently performed actions such as onboarding, data ingestion, and customization, which significantly streamlines app setup and deployment for developers. Utilizing Gen App Builder enables developers to create applications in mere minutes or hours; with the aid of Google’s no-code conversational and search tools that are driven by foundation models, organizations can swiftly initiate projects and construct high-quality user experiences that seamlessly integrate into their platforms and websites. This innovative approach not only accelerates development but also empowers organizations to adapt quickly to changing user needs and preferences in a competitive landscape. -
31
DataChain
iterative.ai
FreeDataChain serves as a bridge between unstructured data found in cloud storage and AI models alongside APIs, facilitating immediate data insights by utilizing foundational models and API interactions to swiftly analyze unstructured files stored in various locations. Its Python-centric framework significantly enhances development speed, enabling a tenfold increase in productivity by eliminating SQL data silos and facilitating seamless data manipulation in Python. Furthermore, DataChain prioritizes dataset versioning, ensuring traceability and complete reproducibility for every dataset, which fosters effective collaboration among team members while maintaining data integrity. The platform empowers users to conduct analyses right where their data resides, keeping raw data intact in storage solutions like S3, GCP, Azure, or local environments, while metadata can be stored in less efficient data warehouses. DataChain provides versatile tools and integrations that are agnostic to cloud environments for both data storage and computation. Additionally, users can efficiently query their unstructured multi-modal data, implement smart AI filters to refine datasets for training, and capture snapshots of their unstructured data along with the code used for data selection and any associated metadata. This capability enhances user control over data management, making it an invaluable asset for data-intensive projects. -
32
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
33
Simplismart
Simplismart
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness. -
34
SciPhi
SciPhi
$249 per monthCreate your RAG system using a more straightforward approach than options such as LangChain, enabling you to select from an extensive array of hosted and remote services for vector databases, datasets, Large Language Models (LLMs), and application integrations. Leverage SciPhi to implement version control for your system through Git and deploy it from any location. SciPhi's platform is utilized internally to efficiently manage and deploy a semantic search engine that encompasses over 1 billion embedded passages. The SciPhi team will support you in the embedding and indexing process of your initial dataset within a vector database. After this, the vector database will seamlessly integrate into your SciPhi workspace alongside your chosen LLM provider, ensuring a smooth operational flow. This comprehensive setup allows for enhanced performance and flexibility in handling complex data queries. -
35
DeepEval
Confident AI
FreeDeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts. -
36
Basalt
Basalt
FreeBasalt is a cutting-edge platform designed to empower teams in the swift development, testing, and launch of enhanced AI features. Utilizing Basalt’s no-code playground, users can rapidly prototype with guided prompts and structured sections. The platform facilitates efficient iteration by enabling users to save and alternate between various versions and models, benefiting from multi-model compatibility and comprehensive versioning. Users can refine their prompts through suggestions from the co-pilot feature. Furthermore, Basalt allows for robust evaluation and iteration, whether through testing with real-world scenarios, uploading existing datasets, or allowing the platform to generate new data. You can execute your prompts at scale across numerous test cases, building trust with evaluators and engaging in expert review sessions to ensure quality. The seamless deployment process through the Basalt SDK simplifies the integration of prompts into your existing codebase. Additionally, users can monitor performance by capturing logs and tracking usage in live environments while optimizing their AI solutions by remaining updated on emerging errors and edge cases that may arise. This comprehensive approach not only streamlines the development process but also enhances the overall effectiveness of AI feature implementation. -
37
StableVicuna
Stability AI
FreeStableVicuna represents the inaugural large-scale open-source chatbot developed through reinforced learning from human feedback (RLHF). It is an advanced version of the Vicuna v0 13b model, which has undergone further instruction fine-tuning and RLHF training. To attain the impressive capabilities of StableVicuna, we use Vicuna as the foundational model and adhere to the established three-stage RLHF framework proposed by Steinnon et al. and Ouyang et al. Specifically, we perform additional training on the base Vicuna model with supervised fine-tuning (SFT), utilizing a blend of three distinct datasets. The first is the OpenAssistant Conversations Dataset (OASST1), which consists of 161,443 human-generated messages across 66,497 conversation trees in 35 languages. The second dataset is GPT4All Prompt Generations, encompassing 437,605 prompts paired with responses created by GPT-3.5 Turbo. Lastly, the Alpaca dataset features 52,000 instructions and demonstrations that were produced using OpenAI's text-davinci-003 model. This collective approach to training enhances the chatbot's ability to engage effectively in diverse conversational contexts. -
38
LangWatch
LangWatch
€99 per monthGuardrails play an essential role in the upkeep of AI systems, and LangWatch serves to protect both you and your organization from the risks of disclosing sensitive information, prompt injection, and potential AI misbehavior, thereby safeguarding your brand from unexpected harm. For businesses employing integrated AI, deciphering the interactions between AI and users can present significant challenges. To guarantee that responses remain accurate and suitable, it is vital to maintain consistent quality through diligent oversight. LangWatch's safety protocols and guardrails effectively mitigate prevalent AI challenges, such as jailbreaking, unauthorized data exposure, and irrelevant discussions. By leveraging real-time metrics, you can monitor conversion rates, assess output quality, gather user feedback, and identify gaps in your knowledge base, thus fostering ongoing enhancement. Additionally, the robust data analysis capabilities enable the evaluation of new models and prompts, the creation of specialized datasets for testing purposes, and the execution of experimental simulations tailored to your unique needs, ensuring that your AI system evolves in alignment with your business objectives. With these tools, businesses can confidently navigate the complexities of AI integration and optimize their operational effectiveness. -
39
ChatGPT, a creation of OpenAI, is an advanced language model designed to produce coherent and contextually relevant responses based on a vast array of internet text. Its training enables it to handle a variety of tasks within natural language processing, including engaging in conversations, answering questions, and generating text in various formats. With its deep learning algorithms, ChatGPT utilizes a transformer architecture that has proven to be highly effective across numerous NLP applications. Furthermore, the model can be tailored for particular tasks, such as language translation, text classification, and question answering, empowering developers to create sophisticated NLP solutions with enhanced precision. Beyond text generation, ChatGPT also possesses the capability to process and create code, showcasing its versatility in handling different types of content. This multifaceted ability opens up new possibilities for integration into various technological applications.
-
40
Langtail
Langtail
$99/month/ unlimited users Langtail is a cloud-based development tool designed to streamline the debugging, testing, deployment, and monitoring of LLM-powered applications. The platform provides a no-code interface for debugging prompts, adjusting model parameters, and conducting thorough LLM tests to prevent unexpected behavior when prompts or models are updated. Langtail is tailored for LLM testing, including chatbot evaluations and ensuring reliable AI test prompts. Key features of Langtail allow teams to: • Perform in-depth testing of LLM models to identify and resolve issues before production deployment. • Easily deploy prompts as API endpoints for smooth integration into workflows. • Track model performance in real-time to maintain consistent results in production environments. • Implement advanced AI firewall functionality to control and protect AI interactions. Langtail is the go-to solution for teams aiming to maintain the quality, reliability, and security of their AI and LLM-based applications. -
41
JinaChat
Jina AI
$9.99 per monthDiscover JinaChat, an innovative LLM service designed specifically for professional users. This platform heralds a transformative phase in multimodal chat functionality, seamlessly integrating not just text but also images and additional media. Enjoy our complimentary short interactions, limited to 100 tokens, which provide a taste of what we offer. With our robust API, developers can utilize extensive conversation histories, significantly reducing the need for repetitive prompts and facilitating the creation of intricate applications. Step into the future of LLM solutions with JinaChat, where interactions are rich, memory-driven, and cost-effective. Many modern LLM applications rely heavily on lengthy prompts or vast memory, which can lead to elevated costs when similar requests are repeatedly sent to the server with only slight modifications. However, JinaChat's API effectively addresses this issue by allowing you to continue previous conversations without the necessity of resending the entire message. This innovation not only streamlines communication but also leads to significant savings, making it an ideal resource for crafting sophisticated applications such as AutoGPT. By simplifying the process, JinaChat empowers developers to focus on creativity and functionality without the burden of excessive costs. -
42
MakerSuite
Google
MakerSuite is a platform designed to streamline the workflow process. It allows you to experiment with prompts, enhance your dataset using synthetic data, and effectively adjust custom models. Once you feel prepared to transition to coding, MakerSuite enables you to export your prompts into code compatible with various programming languages and frameworks such as Python and Node.js. This seamless integration makes it easier for developers to implement their ideas and improve their projects. -
43
Llama Stack
Meta
FreeLlama Stack is an innovative modular framework aimed at simplifying the creation of applications that utilize Meta's Llama language models. It features a client-server architecture with adaptable configurations, giving developers the ability to combine various providers for essential components like inference, memory, agents, telemetry, and evaluations. This framework comes with pre-configured distributions optimized for a range of deployment scenarios, facilitating smooth transitions from local development to live production settings. Developers can engage with the Llama Stack server through client SDKs that support numerous programming languages, including Python, Node.js, Swift, and Kotlin. In addition, comprehensive documentation and sample applications are made available to help users efficiently construct and deploy applications based on the Llama framework. The combination of these resources aims to empower developers to build robust, scalable applications with ease. -
44
Utilize BenchLLM for real-time code evaluation, allowing you to create comprehensive test suites for your models while generating detailed quality reports. You can opt for various evaluation methods, including automated, interactive, or tailored strategies to suit your needs. Our passionate team of engineers is dedicated to developing AI products without sacrificing the balance between AI's capabilities and reliable outcomes. We have designed an open and adaptable LLM evaluation tool that fulfills a long-standing desire for a more effective solution. With straightforward and elegant CLI commands, you can execute and assess models effortlessly. This CLI can also serve as a valuable asset in your CI/CD pipeline, enabling you to track model performance and identify regressions during production. Test your code seamlessly as you integrate BenchLLM, which readily supports OpenAI, Langchain, and any other APIs. Employ a range of evaluation techniques and create insightful visual reports to enhance your understanding of model performance, ensuring quality and reliability in your AI developments.
-
45
Zammo.ai
Zammo.ai
$5,000 per yearZammo.ai, leveraging the power of Microsoft Azure, stands out as a comprehensive conversational AI platform. It simplifies the process for organizations to swiftly deploy robust generative AI bots across various channels such as voice, chat, and social media with just a single click. By seamlessly incorporating over 30 Azure services, including Azure OpenAI, Zammo empowers organizations to provide ChatGPT-like interactions tailored to their own data, enhancing both user engagement and satisfaction. With integrated tools, options for live agent transfer, and smooth compatibility with existing frameworks, it facilitates a straightforward setup while reducing the need for extensive custom coding. Hosted securely within the customer's Azure infrastructure, Zammo guarantees that sensitive data remains protected and compliant with regulations. Focusing on accessibility, Zammo enables organizations to develop inclusive and multilingual experiences that resonate with users. Whether assisting customers, students, or employees, Zammo ensures prompt and dependable answers are available at any time and from anywhere, thus fostering a more connected and responsive interaction. By prioritizing user needs, it not only enhances service delivery but also builds long-lasting relationships.