Best ChainForge Alternatives in 2025
Find the top alternatives to ChainForge currently available. Compare ratings, reviews, pricing, and features of ChainForge alternatives in 2025. Slashdot lists the best ChainForge alternatives on the market that offer competing products that are similar to ChainForge. Sort through ChainForge alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
673 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
LM-Kit.NET
LM-Kit
6 RatingsLM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide. -
3
OpenPipe
OpenPipe
$1.20 per 1M tokensOpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features. -
4
Literal AI
Literal AI
Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects. -
5
DeepEval
Confident AI
FreeDeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts. -
6
Klu
Klu
$97Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools. -
7
Arize Phoenix
Arize AI
FreePhoenix serves as a comprehensive open-source observability toolkit tailored for experimentation, evaluation, and troubleshooting purposes. It empowers AI engineers and data scientists to swiftly visualize their datasets, assess performance metrics, identify problems, and export relevant data for enhancements. Developed by Arize AI, the creators of a leading AI observability platform, alongside a dedicated group of core contributors, Phoenix is compatible with OpenTelemetry and OpenInference instrumentation standards. The primary package is known as arize-phoenix, and several auxiliary packages cater to specialized applications. Furthermore, our semantic layer enhances LLM telemetry within OpenTelemetry, facilitating the automatic instrumentation of widely-used packages. This versatile library supports tracing for AI applications, allowing for both manual instrumentation and seamless integrations with tools like LlamaIndex, Langchain, and OpenAI. By employing LLM tracing, Phoenix meticulously logs the routes taken by requests as they navigate through various stages or components of an LLM application, thus providing a clearer understanding of system performance and potential bottlenecks. Ultimately, Phoenix aims to streamline the development process, enabling users to maximize the efficiency and reliability of their AI solutions. -
8
Utilize BenchLLM for real-time code evaluation, allowing you to create comprehensive test suites for your models while generating detailed quality reports. You can opt for various evaluation methods, including automated, interactive, or tailored strategies to suit your needs. Our passionate team of engineers is dedicated to developing AI products without sacrificing the balance between AI's capabilities and reliable outcomes. We have designed an open and adaptable LLM evaluation tool that fulfills a long-standing desire for a more effective solution. With straightforward and elegant CLI commands, you can execute and assess models effortlessly. This CLI can also serve as a valuable asset in your CI/CD pipeline, enabling you to track model performance and identify regressions during production. Test your code seamlessly as you integrate BenchLLM, which readily supports OpenAI, Langchain, and any other APIs. Employ a range of evaluation techniques and create insightful visual reports to enhance your understanding of model performance, ensuring quality and reliability in your AI developments.
-
9
Latitude
Latitude
$0Latitude is a comprehensive platform for prompt engineering, helping product teams design, test, and optimize AI prompts for large language models (LLMs). It provides a suite of tools for importing, refining, and evaluating prompts using real-time data and synthetic datasets. The platform integrates with production environments to allow seamless deployment of new prompts, with advanced features like automatic prompt refinement and dataset management. Latitude’s ability to handle evaluations and provide observability makes it a key tool for organizations seeking to improve AI performance and operational efficiency. -
10
PromptLayer
PromptLayer
FreeIntroducing the inaugural platform designed specifically for prompt engineers, where you can log OpenAI requests, review usage history, monitor performance, and easily manage your prompt templates. With this tool, you’ll never lose track of that perfect prompt again, ensuring GPT operates seamlessly in production. More than 1,000 engineers have placed their trust in this platform to version their prompts and oversee API utilization effectively. Begin integrating your prompts into production by creating an account on PromptLayer; just click “log in” to get started. Once you’ve logged in, generate an API key and make sure to store it securely. After you’ve executed a few requests, you’ll find them displayed on the PromptLayer dashboard! Additionally, you can leverage PromptLayer alongside LangChain, a widely used Python library that facilitates the development of LLM applications with a suite of useful features like chains, agents, and memory capabilities. Currently, the main method to access PromptLayer is via our Python wrapper library, which you can install effortlessly using pip. This streamlined approach enhances your workflow and maximizes the efficiency of your prompt engineering endeavors. -
11
promptfoo
promptfoo
FreePromptfoo proactively identifies and mitigates significant risks associated with large language models before they reach production. The founders boast a wealth of experience in deploying and scaling AI solutions for over 100 million users, utilizing automated red-teaming and rigorous testing to address security, legal, and compliance challenges effectively. By adopting an open-source, developer-centric methodology, Promptfoo has become the leading tool in its field, attracting a community of more than 20,000 users. It offers custom probes tailored to your specific application, focusing on identifying critical failures instead of merely targeting generic vulnerabilities like jailbreaks and prompt injections. With a user-friendly command-line interface, live reloading, and efficient caching, users can operate swiftly without the need for SDKs, cloud services, or login requirements. This tool is employed by teams reaching millions of users and is backed by a vibrant open-source community. Users can create dependable prompts, models, and retrieval-augmented generation (RAG) systems with benchmarks that align with their unique use cases. Additionally, it enhances the security of applications through automated red teaming and pentesting, while also expediting evaluations via its caching, concurrency, and live reloading features. Consequently, Promptfoo stands out as a comprehensive solution for developers aiming for both efficiency and security in their AI applications. -
12
Portkey
Portkey.ai
$49 per monthLMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey! -
13
With a suite observability tools, you can confidently evaluate, test and ship LLM apps across your development and production lifecycle. Log traces and spans. Define and compute evaluation metrics. Score LLM outputs. Compare performance between app versions. Record, sort, find, and understand every step that your LLM app makes to generate a result. You can manually annotate and compare LLM results in a table. Log traces in development and production. Run experiments using different prompts, and evaluate them against a test collection. You can choose and run preconfigured evaluation metrics, or create your own using our SDK library. Consult the built-in LLM judges to help you with complex issues such as hallucination detection, factuality and moderation. Opik LLM unit tests built on PyTest provide reliable performance baselines. Build comprehensive test suites for every deployment to evaluate your entire LLM pipe-line.
-
14
Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
-
15
Prompt flow
Microsoft
Prompt Flow is a comprehensive suite of development tools aimed at optimizing the entire development lifecycle of AI applications built on LLMs, encompassing everything from concept creation and prototyping to testing, evaluation, and final deployment. By simplifying the prompt engineering process, it empowers users to develop high-quality LLM applications efficiently. Users can design workflows that seamlessly combine LLMs, prompts, Python scripts, and various other tools into a cohesive executable flow. This platform enhances the debugging and iterative process, particularly by allowing users to easily trace interactions with LLMs. Furthermore, it provides capabilities to assess the performance and quality of flows using extensive datasets, while integrating the evaluation phase into your CI/CD pipeline to maintain high standards. The deployment process is streamlined, enabling users to effortlessly transfer their flows to their preferred serving platform or integrate them directly into their application code. Collaboration among team members is also improved through the utilization of the cloud-based version of Prompt Flow available on Azure AI, making it easier to work together on projects. This holistic approach to development not only enhances efficiency but also fosters innovation in LLM application creation. -
16
Traceloop
Traceloop
$59 per monthTraceloop is an all-encompassing observability platform tailored for the monitoring, debugging, and quality assessment of outputs generated by Large Language Models (LLMs). It features real-time notifications for any unexpected variations in output quality and provides execution tracing for each request, allowing for gradual implementation of changes to models and prompts. Developers can effectively troubleshoot and re-execute production issues directly within their Integrated Development Environment (IDE), streamlining the debugging process. The platform is designed to integrate smoothly with the OpenLLMetry SDK and supports a variety of programming languages, including Python, JavaScript/TypeScript, Go, and Ruby. To evaluate LLM outputs comprehensively, Traceloop offers an extensive array of metrics that encompass semantic, syntactic, safety, and structural dimensions. These metrics include QA relevance, faithfulness, overall text quality, grammatical accuracy, redundancy detection, focus evaluation, text length, word count, and the identification of sensitive information such as Personally Identifiable Information (PII), secrets, and toxic content. Additionally, it provides capabilities for validation through regex, SQL, and JSON schema, as well as code validation, ensuring a robust framework for the assessment of model performance. With such a diverse toolkit, Traceloop enhances the reliability and effectiveness of LLM outputs significantly. -
17
Vellum AI
Vellum
Introduce features powered by LLMs into production using tools designed for prompt engineering, semantic search, version control, quantitative testing, and performance tracking, all of which are compatible with the leading LLM providers. Expedite the process of developing a minimum viable product by testing various prompts, parameters, and different LLM providers to quickly find the optimal setup for your specific needs. Vellum serves as a fast, dependable proxy to LLM providers, enabling you to implement version-controlled modifications to your prompts without any coding requirements. Additionally, Vellum gathers model inputs, outputs, and user feedback, utilizing this information to create invaluable testing datasets that can be leveraged to assess future modifications before deployment. Furthermore, you can seamlessly integrate company-specific context into your prompts while avoiding the hassle of managing your own semantic search infrastructure, enhancing the relevance and precision of your interactions. -
18
HoneyHive
HoneyHive
AI engineering can be transparent rather than opaque. With a suite of tools for tracing, assessment, prompt management, and more, HoneyHive emerges as a comprehensive platform for AI observability and evaluation, aimed at helping teams create dependable generative AI applications. This platform equips users with resources for model evaluation, testing, and monitoring, promoting effective collaboration among engineers, product managers, and domain specialists. By measuring quality across extensive test suites, teams can pinpoint enhancements and regressions throughout the development process. Furthermore, it allows for the tracking of usage, feedback, and quality on a large scale, which aids in swiftly identifying problems and fostering ongoing improvements. HoneyHive is designed to seamlessly integrate with various model providers and frameworks, offering the necessary flexibility and scalability to accommodate a wide range of organizational requirements. This makes it an ideal solution for teams focused on maintaining the quality and performance of their AI agents, delivering a holistic platform for evaluation, monitoring, and prompt management, ultimately enhancing the overall effectiveness of AI initiatives. As organizations increasingly rely on AI, tools like HoneyHive become essential for ensuring robust performance and reliability. -
19
Athina AI
Athina AI
FreeAthina functions as a collaborative platform for AI development, empowering teams to efficiently create, test, and oversee their AI applications. It includes a variety of features such as prompt management, evaluation tools, dataset management, and observability, all aimed at facilitating the development of dependable AI systems. With the ability to integrate various models and services, including custom solutions, Athina also prioritizes data privacy through detailed access controls and options for self-hosted deployments. Moreover, the platform adheres to SOC-2 Type 2 compliance standards, ensuring a secure setting for AI development activities. Its intuitive interface enables seamless collaboration between both technical and non-technical team members, significantly speeding up the process of deploying AI capabilities. Ultimately, Athina stands out as a versatile solution that helps teams harness the full potential of artificial intelligence. -
20
Teammately
Teammately
$25 per monthTeammately is an innovative AI agent designed to transform the landscape of AI development by autonomously iterating on AI products, models, and agents to achieve goals that surpass human abilities. Utilizing a scientific methodology, it fine-tunes and selects the best combinations of prompts, foundational models, and methods for knowledge organization. To guarantee dependability, Teammately creates unbiased test datasets and develops adaptive LLM-as-a-judge systems customized for specific projects, effectively measuring AI performance and reducing instances of hallucinations. The platform is tailored to align with your objectives through Product Requirement Docs (PRD), facilitating targeted iterations towards the intended results. Among its notable features are multi-step prompting, serverless vector search capabilities, and thorough iteration processes that consistently enhance AI until the set goals are met. Furthermore, Teammately prioritizes efficiency by focusing on identifying the most compact models, which leads to cost reductions and improved overall performance. This approach not only streamlines the development process but also empowers users to leverage AI technology more effectively in achieving their aspirations. -
21
Chatbot Arena
Chatbot Arena
FreePose any inquiry to two different anonymous AI chatbots, such as ChatGPT, Gemini, Claude, or Llama, and select the most impressive answer; you can continue this process until one emerges as the champion. Should the identity of any AI be disclosed, your selection will be disqualified. You have the option to upload an image and converse, or utilize text-to-image models like DALL-E 3, Flux, and Ideogram to create visuals. Additionally, you can engage with GitHub repositories using the RepoChat feature. Our platform, which is supported by over a million community votes, evaluates and ranks the top LLMs and AI chatbots. Chatbot Arena serves as a collaborative space for crowdsourced AI evaluation, maintained by researchers at UC Berkeley SkyLab and LMArena. We also offer the FastChat project as open source on GitHub and provide publicly available datasets for further exploration. This initiative fosters a thriving community centered around AI advancements and user engagement. -
22
Scale Evaluation
Scale
Scale Evaluation presents an all-encompassing evaluation platform specifically designed for developers of large language models. This innovative platform tackles pressing issues in the field of AI model evaluation, including the limited availability of reliable and high-quality evaluation datasets as well as the inconsistency in model comparisons. By supplying exclusive evaluation sets that span a range of domains and capabilities, Scale guarantees precise model assessments while preventing overfitting. Its intuitive interface allows users to analyze and report on model performance effectively, promoting standardized evaluations that enable genuine comparisons. Furthermore, Scale benefits from a network of skilled human raters who provide trustworthy evaluations, bolstered by clear metrics and robust quality assurance processes. The platform also provides targeted evaluations utilizing customized sets that concentrate on particular model issues, thereby allowing for accurate enhancements through the incorporation of new training data. In this way, Scale Evaluation not only improves model efficacy but also contributes to the overall advancement of AI technology by fostering rigorous evaluation practices. -
23
TruLens
TruLens
FreeTruLens is a versatile open-source Python library aimed at the systematic evaluation and monitoring of Large Language Model (LLM) applications. It features detailed instrumentation, feedback mechanisms, and an intuitive interface that allows developers to compare and refine various versions of their applications, thereby promoting swift enhancements in LLM-driven projects. The library includes programmatic tools that evaluate the quality of inputs, outputs, and intermediate results, enabling efficient and scalable assessments. With its precise, stack-agnostic instrumentation and thorough evaluations, TruLens assists in pinpointing failure modes while fostering systematic improvements in applications. Developers benefit from an accessible interface that aids in comparing different application versions, supporting informed decision-making and optimization strategies. TruLens caters to a wide range of applications, including but not limited to question-answering, summarization, retrieval-augmented generation, and agent-based systems, making it a valuable asset for diverse development needs. As developers leverage TruLens, they can expect to achieve more reliable and effective LLM applications. -
24
Ragas
Ragas
FreeRagas is a comprehensive open-source framework aimed at testing and evaluating applications that utilize Large Language Models (LLMs). It provides automated metrics to gauge performance and resilience, along with the capability to generate synthetic test data that meets specific needs, ensuring quality during both development and production phases. Furthermore, Ragas is designed to integrate smoothly with existing technology stacks, offering valuable insights to enhance the effectiveness of LLM applications. The project is driven by a dedicated team that combines advanced research with practical engineering strategies to support innovators in transforming the landscape of LLM applications. Users can create high-quality, diverse evaluation datasets that are tailored to their specific requirements, allowing for an effective assessment of their LLM applications in real-world scenarios. This approach not only fosters quality assurance but also enables the continuous improvement of applications through insightful feedback and automatic performance metrics that clarify the robustness and efficiency of the models. Additionally, Ragas stands as a vital resource for developers seeking to elevate their LLM projects to new heights. -
25
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
26
Weights & Biases
Weights & Biases
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects. Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers. Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources. -
27
Humanloop
Humanloop
Relying solely on a few examples is insufficient for thorough evaluation. To gain actionable insights for enhancing your models, it’s essential to gather extensive end-user feedback. With the improvement engine designed for GPT, you can effortlessly conduct A/B tests on models and prompts. While prompts serve as a starting point, achieving superior results necessitates fine-tuning on your most valuable data—no coding expertise or data science knowledge is required. Integrate with just a single line of code and seamlessly experiment with various language model providers like Claude and ChatGPT without needing to revisit the setup. By leveraging robust APIs, you can create innovative and sustainable products, provided you have the right tools to tailor the models to your clients’ needs. Copy AI fine-tunes models using their best data, leading to cost efficiencies and a competitive edge. This approach fosters enchanting product experiences that captivate over 2 million active users, highlighting the importance of continuous improvement and adaptation in a rapidly evolving landscape. Additionally, the ability to iterate quickly on user feedback ensures that your offerings remain relevant and engaging. -
28
Deepchecks
Deepchecks
$1,000 per monthLaunch top-notch LLM applications swiftly while maintaining rigorous testing standards. You should never feel constrained by the intricate and often subjective aspects of LLM interactions. Generative AI often yields subjective outcomes, and determining the quality of generated content frequently necessitates the expertise of a subject matter professional. If you're developing an LLM application, you're likely aware of the myriad constraints and edge cases that must be managed before a successful release. Issues such as hallucinations, inaccurate responses, biases, policy deviations, and potentially harmful content must all be identified, investigated, and addressed both prior to and following the launch of your application. Deepchecks offers a solution that automates the assessment process, allowing you to obtain "estimated annotations" that only require your intervention when absolutely necessary. With over 1000 companies utilizing our platform and integration into more than 300 open-source projects, our core LLM product is both extensively validated and reliable. You can efficiently validate machine learning models and datasets with minimal effort during both research and production stages, streamlining your workflow and improving overall efficiency. This ensures that you can focus on innovation without sacrificing quality or safety. -
29
Giskard
Giskard
$0Giskard provides interfaces to AI & Business teams for evaluating and testing ML models using automated tests and collaborative feedback. Giskard accelerates teamwork to validate ML model validation and gives you peace-of-mind to eliminate biases, drift, or regression before deploying ML models into production. -
30
Pezzo
Pezzo
$0Pezzo serves as an open-source platform for LLMOps, specifically designed for developers and their teams. With merely two lines of code, users can effortlessly monitor and troubleshoot AI operations, streamline collaboration and prompt management in a unified location, and swiftly implement updates across various environments. This efficiency allows teams to focus more on innovation rather than operational challenges. -
31
Symflower
Symflower
Symflower revolutionizes the software development landscape by merging static, dynamic, and symbolic analyses with Large Language Models (LLMs). This innovative fusion capitalizes on the accuracy of deterministic analyses while harnessing the imaginative capabilities of LLMs, leading to enhanced quality and expedited software creation. The platform plays a crucial role in determining the most appropriate LLM for particular projects by rigorously assessing various models against practical scenarios, which helps ensure they fit specific environments, workflows, and needs. To tackle prevalent challenges associated with LLMs, Symflower employs automatic pre-and post-processing techniques that bolster code quality and enhance functionality. By supplying relevant context through Retrieval-Augmented Generation (RAG), it minimizes the risk of hallucinations and boosts the overall effectiveness of LLMs. Ongoing benchmarking guarantees that different use cases remain robust and aligned with the most recent models. Furthermore, Symflower streamlines both fine-tuning and the curation of training data, providing comprehensive reports that detail these processes. This thorough approach empowers developers to make informed decisions and enhances overall productivity in software projects. -
32
Selene 1
atla
Atla's Selene 1 API delivers cutting-edge AI evaluation models, empowering developers to set personalized assessment standards and achieve precise evaluations of their AI applications' effectiveness. Selene surpasses leading models on widely recognized evaluation benchmarks, guaranteeing trustworthy and accurate assessments. Users benefit from the ability to tailor evaluations to their unique requirements via the Alignment Platform, which supports detailed analysis and customized scoring systems. This API not only offers actionable feedback along with precise evaluation scores but also integrates smoothly into current workflows. It features established metrics like relevance, correctness, helpfulness, faithfulness, logical coherence, and conciseness, designed to tackle prevalent evaluation challenges, such as identifying hallucinations in retrieval-augmented generation scenarios or contrasting results with established ground truth data. Furthermore, the flexibility of the API allows developers to innovate and refine their evaluation methods continuously, making it an invaluable tool for enhancing AI application performance. -
33
RagaAI
RagaAI
RagaAI stands out as the premier AI testing platform, empowering businesses to minimize risks associated with artificial intelligence while ensuring that their models are both secure and trustworthy. By effectively lowering AI risk exposure in both cloud and edge environments, companies can also manage MLOps expenses more efficiently through smart recommendations. This innovative foundation model is crafted to transform the landscape of AI testing. Users can quickly pinpoint necessary actions to address any dataset or model challenges. Current AI-testing practices often demand significant time investments and hinder productivity during model development, leaving organizations vulnerable to unexpected risks that can lead to subpar performance after deployment, ultimately wasting valuable resources. To combat this, we have developed a comprehensive, end-to-end AI testing platform designed to significantly enhance the AI development process and avert potential inefficiencies and risks after deployment. With over 300 tests available, our platform ensures that every model, data, and operational issue is addressed, thereby speeding up the AI development cycle through thorough testing. This rigorous approach not only saves time but also maximizes the return on investment for businesses navigating the complex AI landscape. -
34
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
35
AgentBench
AgentBench
AgentBench serves as a comprehensive evaluation framework tailored to measure the effectiveness and performance of autonomous AI agents. It features a uniform set of benchmarks designed to assess various dimensions of an agent's behavior, including their proficiency in task-solving, decision-making, adaptability, and interactions with simulated environments. By conducting evaluations on tasks spanning multiple domains, AgentBench aids developers in pinpointing both the strengths and limitations in the agents' performance, particularly regarding their planning, reasoning, and capacity to learn from feedback. This framework provides valuable insights into an agent's capability to navigate intricate scenarios that mirror real-world challenges, making it beneficial for both academic research and practical applications. Ultimately, AgentBench plays a crucial role in facilitating the ongoing enhancement of autonomous agents, ensuring they achieve the required standards of reliability and efficiency prior to their deployment in broader contexts. This iterative assessment process not only fosters innovation but also builds trust in the performance of these autonomous systems. -
36
Galileo
Galileo
Understanding the shortcomings of models can be challenging, particularly in identifying which data caused poor performance and the reasons behind it. Galileo offers a comprehensive suite of tools that allows machine learning teams to detect and rectify data errors up to ten times quicker. By analyzing your unlabeled data, Galileo can automatically pinpoint patterns of errors and gaps in the dataset utilized by your model. We recognize that the process of ML experimentation can be chaotic, requiring substantial data and numerous model adjustments over multiple iterations. With Galileo, you can manage and compare your experiment runs in a centralized location and swiftly distribute reports to your team. Designed to seamlessly fit into your existing ML infrastructure, Galileo enables you to send a curated dataset to your data repository for retraining, direct mislabeled data to your labeling team, and share collaborative insights, among other functionalities. Ultimately, Galileo is specifically crafted for ML teams aiming to enhance the quality of their models more efficiently and effectively. This focus on collaboration and speed makes it an invaluable asset for teams striving to innovate in the machine learning landscape. -
37
16x Prompt
16x Prompt
$24 one-time paymentOptimize the management of source code context and generate effective prompts efficiently. Ship alongside ChatGPT and Claude, the 16x Prompt tool enables developers to oversee source code context and prompts for tackling intricate coding challenges within existing codebases. By inputting your personal API key, you gain access to APIs from OpenAI, Anthropic, Azure OpenAI, OpenRouter, and other third-party services compatible with the OpenAI API, such as Ollama and OxyAPI. Utilizing these APIs ensures that your code remains secure, preventing it from being exposed to the training datasets of OpenAI or Anthropic. You can also evaluate the code outputs from various LLM models, such as GPT-4o and Claude 3.5 Sonnet, side by side, to determine the most suitable option for your specific requirements. Additionally, you can create and store your most effective prompts as task instructions or custom guidelines to apply across diverse tech stacks like Next.js, Python, and SQL. Enhance your prompting strategy by experimenting with different optimization settings for optimal results. Furthermore, you can organize your source code context through designated workspaces, allowing for the efficient management of multiple repositories and projects, facilitating seamless transitions between them. This comprehensive approach not only streamlines development but also fosters a more collaborative coding environment. -
38
Label Studio
Label Studio
Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects. -
39
DagsHub
DagsHub
$9 per monthDagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains. -
40
Arthur AI
Arthur
Monitor the performance of your models to identify and respond to data drift, enhancing accuracy for improved business results. Foster trust, ensure regulatory compliance, and promote actionable machine learning outcomes using Arthur’s APIs that prioritize explainability and transparency. Actively supervise for biases, evaluate model results against tailored bias metrics, and enhance your models' fairness. Understand how each model interacts with various demographic groups, detect biases early, and apply Arthur's unique bias reduction strategies. Arthur is capable of scaling to accommodate up to 1 million transactions per second, providing quick insights. Only authorized personnel can perform actions, ensuring data security. Different teams or departments can maintain separate environments with tailored access controls, and once data is ingested, it becomes immutable, safeguarding the integrity of metrics and insights. This level of control and monitoring not only improves model performance but also supports ethical AI practices. -
41
Agenta
Agenta
FreeCollaborate effectively on prompts and assess LLM applications with assurance using Agenta, a versatile platform that empowers teams to swiftly develop powerful LLM applications. Build an interactive playground linked to your code, allowing the entire team to engage in experimentation and collaboration seamlessly. Methodically evaluate various prompts, models, and embeddings prior to launching into production. Share a link to collect valuable human feedback from team members, fostering a collaborative environment. Agenta is compatible with all frameworks, such as Langchain and Lama Index, as well as model providers, including OpenAI, Cohere, Huggingface, and self-hosted models. Additionally, the platform offers insights into the costs, latency, and chain of calls associated with your LLM application. Users can create straightforward LLM apps right from the user interface, but for those seeking to develop more tailored applications, coding in Python is necessary. Agenta stands out as a model-agnostic tool that integrates with a wide variety of model providers and frameworks, though it currently only supports an SDK in Python. This flexibility ensures that teams can adapt Agenta to their specific needs while maintaining a high level of functionality. -
42
Autoblocks AI
Autoblocks AI
Autoblocks offers AI teams the tools to streamline the process of testing, validating, and launching reliable AI agents. The platform eliminates traditional manual testing by automating the generation of test cases based on real user inputs and continuously integrating SME feedback into the model evaluation. Autoblocks ensures the stability and predictability of AI agents, even in industries with sensitive data, by providing tools for edge case detection, red-teaming, and simulation to catch potential risks before deployment. This solution enables faster, safer deployment without sacrificing quality or compliance. -
43
ZenPrompts
ZenPrompts
FreeIntroducing a robust prompt editing tool designed to assist you in crafting, enhancing, testing, and sharing prompts efficiently. This platform includes every essential feature for developing advanced prompts. During its beta phase, ZenPrompts is fully accessible at no cost; simply provide your own OpenAI API key to begin. With ZenPrompts, you can curate a collection of prompts that highlight your skills in the evolving landscape of AI and LLMs. The design and engineering of intricate prompts demand the ability to easily evaluate outputs from various OpenAI models. ZenPrompts facilitates this by allowing you to contrast model results side-by-side, empowering you to select the most suitable model based on factors like quality, cost, or performance requirements. Furthermore, ZenPrompts presents a sleek, minimalist environment to showcase your prompt collection. With its clean design and intuitive user experience, the platform focuses on ensuring your creativity shines through. Enhance the effectiveness of your prompts by displaying them with elegance, capturing the attention of your audience effortlessly. In addition, ZenPrompts continually evolves, incorporating user feedback to refine its features and improve your experience. -
44
Comet LLM
Comet LLM
FreeCometLLM serves as a comprehensive platform for recording and visualizing your LLM prompts and chains. By utilizing CometLLM, you can discover effective prompting techniques, enhance your troubleshooting processes, and maintain consistent workflows. It allows you to log not only your prompts and responses but also includes details such as prompt templates, variables, timestamps, duration, and any necessary metadata. The user interface provides the capability to visualize both your prompts and their corresponding responses seamlessly. You can log chain executions with the desired level of detail, and similarly, visualize these executions through the interface. Moreover, when you work with OpenAI chat models, the tool automatically tracks your prompts for you. It also enables you to monitor and analyze user feedback effectively. The UI offers the feature to compare your prompts and chain executions through a diff view. Comet LLM Projects are specifically designed to aid in conducting insightful analyses of your logged prompt engineering processes. Each column in the project corresponds to a specific metadata attribute that has been recorded, meaning the default headers displayed can differ based on the particular project you are working on. Thus, CometLLM not only simplifies prompt management but also enhances your overall analytical capabilities. -
45
Dify
Dify
Dify serves as an open-source platform aimed at enhancing the efficiency of developing and managing generative AI applications. It includes a wide array of tools, such as a user-friendly orchestration studio for designing visual workflows, a Prompt IDE for testing and refining prompts, and advanced LLMOps features for the oversight and enhancement of large language models. With support for integration with multiple LLMs, including OpenAI's GPT series and open-source solutions like Llama, Dify offers developers the versatility to choose models that align with their specific requirements. Furthermore, its Backend-as-a-Service (BaaS) capabilities allow for the effortless integration of AI features into existing enterprise infrastructures, promoting the development of AI-driven chatbots, tools for document summarization, and virtual assistants. This combination of tools and features positions Dify as a robust solution for enterprises looking to leverage generative AI technologies effectively. -
46
MindMac
MindMac
$29 one-time paymentMindMac is an innovative macOS application aimed at boosting productivity by providing seamless integration with ChatGPT and various AI models. It supports a range of AI providers such as OpenAI, Azure OpenAI, Google AI with Gemini, Google Cloud Vertex AI with Gemini, Anthropic Claude, OpenRouter, Mistral AI, Cohere, Perplexity, OctoAI, and local LLMs through LMStudio, LocalAI, GPT4All, Ollama, and llama.cpp. The application is equipped with over 150 pre-designed prompt templates to enhance user engagement and allows significant customization of OpenAI settings, visual themes, context modes, and keyboard shortcuts. One of its standout features is a robust inline mode that empowers users to generate content or pose inquiries directly within any application, eliminating the need to switch between windows. MindMac prioritizes user privacy by securely storing API keys in the Mac's Keychain and transmitting data straight to the AI provider, bypassing intermediary servers. Users can access basic features of the app for free, with no account setup required. Additionally, the user-friendly interface ensures that even those unfamiliar with AI tools can navigate it with ease. -
47
Chainlit
Chainlit
Chainlit is a versatile open-source Python library that accelerates the creation of production-ready conversational AI solutions. By utilizing Chainlit, developers can swiftly design and implement chat interfaces in mere minutes rather than spending weeks on development. The platform seamlessly integrates with leading AI tools and frameworks such as OpenAI, LangChain, and LlamaIndex, facilitating diverse application development. Among its notable features, Chainlit supports multimodal functionalities, allowing users to handle images, PDFs, and various media formats to boost efficiency. Additionally, it includes strong authentication mechanisms compatible with providers like Okta, Azure AD, and Google, enhancing security measures. The Prompt Playground feature allows developers to refine prompts contextually, fine-tuning templates, variables, and LLM settings for superior outcomes. To ensure transparency and effective monitoring, Chainlit provides real-time insights into prompts, completions, and usage analytics, fostering reliable and efficient operations in the realm of language models. Overall, Chainlit significantly streamlines the process of building conversational AI applications, making it a valuable tool for developers in this rapidly evolving field. -
48
StableVicuna
Stability AI
FreeStableVicuna represents the inaugural large-scale open-source chatbot developed through reinforced learning from human feedback (RLHF). It is an advanced version of the Vicuna v0 13b model, which has undergone further instruction fine-tuning and RLHF training. To attain the impressive capabilities of StableVicuna, we use Vicuna as the foundational model and adhere to the established three-stage RLHF framework proposed by Steinnon et al. and Ouyang et al. Specifically, we perform additional training on the base Vicuna model with supervised fine-tuning (SFT), utilizing a blend of three distinct datasets. The first is the OpenAssistant Conversations Dataset (OASST1), which consists of 161,443 human-generated messages across 66,497 conversation trees in 35 languages. The second dataset is GPT4All Prompt Generations, encompassing 437,605 prompts paired with responses created by GPT-3.5 Turbo. Lastly, the Alpaca dataset features 52,000 instructions and demonstrations that were produced using OpenAI's text-davinci-003 model. This collective approach to training enhances the chatbot's ability to engage effectively in diverse conversational contexts. -
49
Verta
Verta
Start customizing LLMs and prompts right away without needing a PhD, as everything you need is provided in Starter Kits tailored to your specific use case, including model, prompt, and dataset recommendations. With these resources, you can immediately begin testing, assessing, and fine-tuning model outputs. You have the freedom to explore various models, both proprietary and open-source, along with different prompts and techniques all at once, which accelerates the iteration process. The platform also incorporates automated testing and evaluation, along with AI-driven prompt and enhancement suggestions, allowing you to conduct numerous experiments simultaneously and achieve high-quality results in a shorter time frame. Verta’s user-friendly interface is designed to support individuals of all technical backgrounds in swiftly obtaining superior model outputs. By utilizing a human-in-the-loop evaluation method, Verta ensures that human insights are prioritized during critical phases of the iteration cycle, helping to capture expertise and foster the development of intellectual property that sets your GenAI products apart. You can effortlessly monitor your top-performing options through Verta’s Leaderboard, making it easier to refine your approach and maximize efficiency. This comprehensive system not only streamlines the customization process but also enhances your ability to innovate in artificial intelligence. -
50
Vicuna
lmsys.org
FreeVicuna-13B is an open-source conversational agent developed through the fine-tuning of LLaMA, utilizing a dataset of user-shared dialogues gathered from ShareGPT. Initial assessments, with GPT-4 serving as an evaluator, indicate that Vicuna-13B achieves over 90% of the quality exhibited by OpenAI's ChatGPT and Google Bard, and it surpasses other models such as LLaMA and Stanford Alpaca in more than 90% of instances. The entire training process for Vicuna-13B incurs an estimated expenditure of approximately $300. Additionally, the source code and model weights, along with an interactive demonstration, are made available for public access under non-commercial terms, fostering a collaborative environment for further development and exploration. This openness encourages innovation and enables users to experiment with the model's capabilities in diverse applications.